首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)Tα2=(a一1,一a,1)T分别是λ1,λ2所对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是β0=(2,一5a,2a+1)T.试求a及λ0的值
A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)Tα2=(a一1,一a,1)T分别是λ1,λ2所对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是β0=(2,一5a,2a+1)T.试求a及λ0的值
admin
2017-07-26
30
问题
A是三阶实对称矩阵,A的特征值是λ
1
=1,λ
2
=2,λ
3
=一1,且α
1
=(1,a+1,2)
T
α
2
=(a一1,一a,1)
T
分别是λ
1
,λ
2
所对应的特征向量,A的伴随矩阵A
*
有特征值λ
0
,λ
0
所对应的特征向量是β
0
=(2,一5a,2a+1)
T
.试求a及λ
0
的值.
选项
答案
设α
3
=(x
1
,x
2
,x
3
)
T
是A关于λ
3
所对应的特征向量,由于A是实对称矩阵,有α
1
,α
2
,α
3
两两正交,于是 [*] 由①解出a=1或a=一1. 若a=1,从②、③可得α
3
=(一4,1,1)
T
,此时α
1
=(1,2,2)
T
,α
2
=(,一1,1)
T
,β
0
=(2,一5,3)
T
.因为A关于λ的特征向量就是A
*
关于[*]的特征向量,现在β
0
不与任一个A的特征向量共线,说明风不是A的特征向量,a=1不合题意,舍去. 若a=一1,从②、③得α
1
=(1,0,2)
T
,α
2
=(一2,1,1)
T
,α
3
=(一2,一5,1)
T
,β
0
=(2,5,一1)
T
,那么Aα
3
=λ
3
α
3
,即Aβ
0
=λ
3
β
0
,又|A|=λ
1
λ
2
λ
3
=一2,有 λ
3
A
—1
β
0
=β
0
,即A
*
β
0
=[*]β
0
=2β
0
. 所以a=一1,λ
0
=2.
解析
转载请注明原文地址:https://jikaoti.com/ti/kVSRFFFM
0
考研数学三
相关试题推荐
设a1,a2,…,as均为n维向量,下列结论不正确的是().
设A为n阶非奇异矩阵,a是n维列向量,b为常数,P=(Ⅰ)计算PQ;(Ⅱ)证明PQ可逆的充分必要条件是aTA-1a≠b.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0使得AB=0,则
设A是n阶反对称矩阵,证明:如果λ是A的特征值,那么一λ也必是A的特征值.
设A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
设中与A等价的矩阵有()个.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=0,则().
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
向量组a1,a2,…,as线性无关的充分条件是().
随机试题
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好三个关联表对象“tStud”、“tCourse”和“tScore”。此外,还提供窗体“fTest”,试按以下要求完成设计。(1)创建一个查询,查找第三季度入校的学生信息,输出
男,45岁,患慢性牙周炎,牙周基础治疗后,右下第一磨牙和第二前磨牙牙周袋深仍6mm如果药物治疗后效果不佳,仍有深牙周袋,且探诊后出血,下步应采用的治疗是
下列哪项检查对诊断慢性血管内溶血最有意义?()
甲公司是E市一家以代理新建商品房销售为主的知名房地产经纪公司。乙公司是一家新成立的房地产开发公司,缺乏知名度,经济实力不雄厚,竞争能力较弱。乙公司在E市远郊区购买了一宗面积不大的土地,准备开发一个规模较小的住宅项目。乙公司找到甲公司,委托其营销策划并独家代
扣件式钢管双排外脚手架外侧面设置的剪刀撑其斜杆与地面的倾角宜在()之间。
商业银行结算的原则有()。
曲阳、玉田和武强分别被文化部命名为“中国民间文艺之乡——()”。
DNA是人类进行亲子鉴定的主要依据。就DNA的组成,下面说法正确的是()。
设有定义charstr[]="Hello";则语句printf("%d%d",sizeof(str),strlen(str));的输出结果是
Howcanthestartingoftheuniversitybelike?Itcanbebothexcitingand______.
最新回复
(
0
)