首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是3维向量空间R3的基,则从基α1,α2/2,α3/3到α1+α2,α2+α3,α3 +α1的过渡矩阵为( ).
设α1,α2,α3是3维向量空间R3的基,则从基α1,α2/2,α3/3到α1+α2,α2+α3,α3 +α1的过渡矩阵为( ).
admin
2017-09-07
34
问题
设α
1
,α
2
,α
3
是3维向量空间R
3
的基,则从基α
1
,α
2
/2,α
3
/3到α
1
+α
2
,α
2
+α
3
,α
3
+α
1
的过渡矩阵为( ).
选项
A、
B、
C、
D、
答案
A
解析
基α
1
,α
2
/2,α
3
/3到α
1
+α
2
,α
2
+α
3
,α
3
+α
1
的过渡矩阵,也就是α
1
+α
2
,α
2
+α
3
,α
3
+α
1
对于α
1
,α
2
/2,α
3
/3的表示矩阵.α
1
+α
2
=α
1
+2(α
2
/2),α
2
+α
3
=2(α
2
/2)+3(α
3
/3),α
3
+α
1
=α
1
+3(α
3
/3).于是α
1
+α
2
,α
2
+α
3
,α
3
+α
1
对于α
1
,α
2
/2,α
3
/3的表示矩阵为
转载请注明原文地址:https://jikaoti.com/ti/kGVRFFFM
0
考研数学一
相关试题推荐
累次积分I=(x2+y2)dy=_______.
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
设A为n阶矩阵,对于齐次线性方程(Ⅰ)Anx=0和(Ⅱ)An+1x=0,则必有
已知随机变量,且X1与X2独立.记A={X1=1},B={X2=1},C1={X1X2=1},C2={X1X2=-1},则
求空间曲线积分J=∫Ly2dx+xydy+xzdz,其中L是圆柱面x2+y2=2y与平面y=z-1的交线,从戈轴正向看去取逆时针方向.
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T,(Ⅰ)若α1,α2,α3线性相关,求a的值;(Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4;(Ⅲ)当a=3时,证明α1,
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
随机试题
张某、王某和李某三人成立了一家有限责任公司,然后三人以该公司的名义从事集资诈骗行为,所得数额较大,并由三人平分。对于三人的行为定性,下列哪些选项是正确的?()
甲亢患者饮食中的蛋白质以多少为宜
简述后勤保障体系在新闻单位中的作用。
中心型肺癌的间接X线征象是
A.家畜B.患者C.蚊虫D.毛蚶E.鼠类
担保信用债券是按债券()划分的种类。
连续式摊铺机的生产率计算公式是:Q=1000hBVpKB,KB是()。
简述历史文化名城的概念、主要特征及类型。
Whatdoesthepassagemainlydiscuss?Accordingtothepassage,scientistscannotexplainwhichofthefollowingaspectsofsq
DavidLandes,authorofTheWealthandPovertyofNations:WhySomeAreSoRichandSomeSoPoor,creditstheworld’seconomica
最新回复
(
0
)