设函数u(x,y)在有界闭区域D上连续,在D的内部具有2阶连续偏导数,且满足

admin2021-01-19  24

问题 设函数u(x,y)在有界闭区域D上连续,在D的内部具有2阶连续偏导数,且满足

选项 A、u(x,y)的最大值和最小值都在D的边界上取得.
B、u(x,y)的最大值和最小值都在D的内部取得.
C、u(x,y)的最大值在D的内部取得,最小值在D的边界上取得.
D、u(x,y)的最小值在D的内部取得,最大值在D的边界上取得.

答案A

解析 【分析一】  若u(x,y)在D内部某点M0(x0,y0)取最小值,则

因此u(x,y)不能在D内部取到最小值.同理u(x,y)不能在D内部取最大值.
因此u(x,y)的最大值和最小值都在D的边界取得.选A.
【分析二】  用特殊选取法.

    但u(x,y)在D内或无驻点或有唯一驻点M0(-1,-1).
    在M0处AC-B2=-1<0,M0不是u(x,y)的极值点.
因此u(x,y)在D的最大值与最小值都不能在D内部取得,只能在D的边界取得.
    对此u(x,y)(A)正确,(B)、(C)、(D)均不正确.因此选A.
转载请注明原文地址:https://jikaoti.com/ti/jdARFFFM
0

最新回复(0)