首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x2+xy+y2在闭区域D={(x,y)|x2+y2≤1}上的最大值和最小值。
求函数f(x,y)=x2+xy+y2在闭区域D={(x,y)|x2+y2≤1}上的最大值和最小值。
admin
2019-06-29
40
问题
求函数f(x,y)=x
2
+xy+y
2
在闭区域D={(x,y)|x
2
+y
2
≤1}上的最大值和最小值。
选项
答案
由于所给的区域D是闭区域(包括边界),故属于混合型的情况。 先考虑函数f(x,y)在区域D内部{(x,y)|x
2
+y
2
<1}的极值,这属于无条件极值, 解线性方程组 [*] 得 x=0,y=0。 在(0,0)点,有 f”
xx
=2>0,f”
xy
=1,f”
yy
=2, 因为 f”
xx
f”
yy
-f”
yy
>0, 所以(0,0)点是函数的极小值点,极小值为f(0,0)=0。 再考虑函数f(x,y)在区域D的边界{(x,y)|x
2
+y
2
=1}上的极值,这是条件极值问题,作拉格朗日函数 L(x,y,t)=x
2
+xy+y
2
-t(x
2
+y
2
-1), 求偏导得方程组 [*] 将第一式乘以x,第二式乘以y然后相加,结合第三式得到 f(x,y)=t(x
2
+y
2
)=t。 由x
2
+y
2
=1可知,二元一次方程组[*] 有非零解,故系数行列式等于零,即 4t
2
-8t+3=0, 解得[*]。 由于连续函数在闭区间上必可取到最大值和最小值,故f(x,y)在边界上的最大值为[*],最小值为[*]。 综上所述,f(x,y)在闭区域D上的最大值为[*],最小值为0。
解析
转载请注明原文地址:https://jikaoti.com/ti/XeERFFFM
0
考研数学二
相关试题推荐
已知曲线L:(x≥0),点O(0,0),点A(0,1),设P是L上的动点,S是直线OA与直线AP及曲线L所围成图形的面积.若P运动到点(3,4)时沿x轴正向的速度是4,求此时S关于时间t的变化率.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。令P=(α1,α2,α3),求P-1AP。
设A为三阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵。记,则A=()
设函数f(x)=lnx+(Ⅰ)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+<1,证明xn存在,并求此极限。
如图,C1和C2分别是y=1/2(1+ex)和y=ex的图形,过点(0,1)的曲线C3是一单调增函数的图形。过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly。记C1,C2与lx所围图形的面积为S1(x);C2,C3与ly所围图形的面积为S2
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线l:y(x)上的任意一点。l在P处的切线与y轴相交于点(0,Yp),法线与x轴相交于点(Xp,0),若Xp=Yp,求l上点的坐标(x,y)满足的方程。
设函数u(x,y)在有界闭区域D上连续,在D的内部具有二阶连续偏导数,且满足=0,则()
设(1)若ai≠aj(i≠j),求ATX=b的解;(2)若a1=a3=a≠0,a2=a4=-a,求ATX=b的通解.
设f(x)在x=0的某邻域内有连续的一阶导数,且f’(0)=0,f’’(0)存在.求证:
随机试题
()计量间水阀组是由中压、高压闸板阀和管路组成的,有来油汇管、掺水汇管两大部分。
与局部感染或肿瘤密切相关的免疫球蛋白是
丹毒急性蜂窝组织炎
牙髓息肉
关于马钱子,指出下列正确的是
某砌筑工程,冬期采用暖棚法施工,室内温度5℃,其养护时间是()d。
为反映我国工业企业自主创新能力现状,了解企业开展创新活动的政策环境以及企业家对创新的认知程度,国家统计局近期对我国工业企业的创新情况进行了一次专项调查。调查结果显示,2009-2011年间,全国开展创新活动的规模以上工业企业有8.6万家,占全部规
下列某一金融市场与其他3种不同的是()。
下列说法中,错误的一项是______。
Forachild,happinesshasamagicalnature.Iremembermakinghide-outsinnewly-cuthay,playingcopsandrobbersinthewoods
最新回复
(
0
)