首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵,X是一个2阶矩阵。 (Ⅰ)求满足矩阵方程ABX-XAB=O的所有的X (Ⅱ)矩阵方程是否有解,如果有解,求其解。
设矩阵,X是一个2阶矩阵。 (Ⅰ)求满足矩阵方程ABX-XAB=O的所有的X (Ⅱ)矩阵方程是否有解,如果有解,求其解。
admin
2019-01-25
30
问题
设矩阵
,X是一个2阶矩阵。
(Ⅰ)求满足矩阵方程ABX-XAB=O的所有的X
(Ⅱ)矩阵方程
是否有解,如果有解,求其解。
选项
答案
(Ⅰ)设未知矩阵为[*],代入方程可得 [*] 则该矩阵方程等价于齐次线性方程组[*] 对该方程的系数矩阵实施初等行变换, [*] 其中自由变量为x
3
,x
4
,令
3
=0,x
4
=1和x
3
=1,x
4
=0,可得基础解系为 α
1
=(2,2,1,0)
T
,α
2
=(-1,0,0,1)
T
, 因此 (x
1
,x
2
,x
3
,x
4
)
T
=k
1
α
1
+k
2
α
2
=(2k
1
-k
2
,2k
1
,k
1
,k
2
)
T
, 则满足矩阵方程的矩阵X为[*],k
1
,k
2
为任意常数。 (Ⅱ)矩阵方程[*]可转化为非齐次线性方程组 [*] 未知数个数多于方程个数,因此必有解,对应齐次方程组的通解为 x
0
=k
1
α
1
+k
2
α
2
=(2k
1
-k
2
,2k
1
,k
1
,k
2
)
T
, 非齐次线性方程组的一个特解为β=(-2,-1,0,0)
T
。因此方程组的通解为 x
0
=k
1
α
1
+k
2
α
2
+β=(2k
1
-k
2
-2,2k
1
-1,k
1
,k
2
)
T
。 则满足矩阵方程的矩阵X为[*],k
1
,k
2
为任意常数。
解析
本题考查矩阵方程。该题第一问求解矩阵方程时可通过变形将其转化为求解齐次线性方程组的解,根据齐次线性方程组求通解的步骤求出通解即为X的四个元素。第二问等价于求非齐次线性方程组的解的存在性。
转载请注明原文地址:https://jikaoti.com/ti/jOBRFFFM
0
考研数学三
相关试题推荐
证明级数收敛,且其和数小于1.
设n阶方阵A≠0,满足Am=0(其中m为某正整数).(1)求A的特征值.(2)证明:A不相似于对角矩阵.(3)证明:|E+A|=1.(4)若方阵B满足AB=BA,证明:|A+B|=|B|.
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
已知矩阵A=有三个线性无关的特征向量,λ=5是矩阵A的二重特征值,A*是矩阵A的伴随矩阵,求可逆矩阵P,使P—1A*P为对角矩阵.
已知问a,b为何值时,β不是α1,α2,α3,α4的线性组合?a,b为何值时,β有α1,α2,α3,α4的唯一线性表示式?并写出该表示式.
设总体X~N(μ,σ2),μ未知,则σ2的置信度为1一α的置信区间为(注:(n)等均为上分位数记号)().
设(-1)nan2n收敛,则级数an【】
设f(χ)在χ=1的某邻域内连续,且则χ=1是f(χ)的().
随机试题
给定程序中,函数fun的功能是:将a所指3×5矩阵中第k列的元素左移到第0列,第k列以后的每列元素行依次左移,原来左边的各列依次绕到右边。例如,有下列矩阵:12345123451
无法测到肺毛细血管楔压(PCWP)时,可参照下述哪项进行估计
研究人员对某北方工业城市进行肺癌监测,结果显示在该市人口中当年有400人新确诊为肺癌,其中男性为260人,女性为150人当年肺癌患者中有180人死亡,假定该城区年中人口数为10万,男、女性人口数大致相当。该城市当年肺癌死亡率为
颞下颌关节侧斜位X线片上,关节间隙的宽度为
按照目前我国的管理体制,直管公房一般由()管理,其作为直管公房所有人的代表,依法行使占有、使用、收益和处分的权利。
顺达公司是自理报关单位,在上海海关办理了报关注册。2007年8月从深圳皇岗口岸进口一批货物,那么该公司应该()。
初级群体指的是由面对面互动所形成的、具有亲密的人际关系和浓厚的感情色彩的社会群体;次级群体指的是其成员为了某种特定的目标集合在一起,通过明确的规章制度结成正规关系的社会群体。根据上述定义。下列涉及次级群体的是:
小王计划邀请30家客户参加答谢会,并为客户发送邀请函。快速制作30份邀请函的最优操作方法是:
A、Tryingtocallforamechanic.B、Tryingtomakeabudget.C、Tryingtofixthecarbyhimself.D、Tryingtopersuadehisfriend.
Nextyear,ifallgoesasplanned,thelargestmakerofpersonalcomputersinAsiawillbecomethethirdlargestintheworld.
最新回复
(
0
)