首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=( )。
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=( )。
admin
2015-11-16
37
问题
设α
1
,α
2
,α
3
是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α
1
=[1,2,3,4]
T
,α
2
+α
3
=[0,1,2,3]
T
,C表示任意常数,则线性方程组AX=b的通解X=( )。
选项
A、[1,2,3,4]
T
+C[1,1,1,1]
T
B、[1,2,3,4]
T
+C[0,1,2,3]
T
C、[1,2,3,4]
T
+C[2,3,4,5]
T
D、[1,2,3,4]
T
+C[3,4,5,6]
T
答案
C
解析
[解题思路] 根据非齐次线性方程组通解的结构,依次求出其导出组的基础解系及自身的一个特解。
解一 因r(A)=3,n=4,故导出组AX=0的一个基础解系只含n-r(A)=4-3=1个解,又根据非齐次线性方程组的两个解的差为其导出组的解,因而
2α
1
-(α
2
+α
3
)=(α
1
-α
2
)+(α
1
-α
3
)=[2,3,4,5]
T
≠0
为其导出组的一个解,因它不等于0,故[2,3,4,5]
T
为其导出组的基础解系,又显然α
1
为其自身的一个特解,故所求通解为
α
1
+C[2α
1
-(α
2
+α
3
)]=[1,2,3,4]
T
+C[2,3,4,5]
T
,仅(C)入选。
解二 (A)中[1,1,1,1]
T
=α
1
-(α
2
+α
3
),(B)中[0,1,2,3]
T
=α
2
+α
3
及(D)中[3,4,5,6]
T
=3α
1
-2(α
2
+α
3
)都不是AX=0的解,因而乘以任意常数C后不能构成其导出组的基础解系,故选项(A)、(B)、(D)都不正确,仅(C)入选。
转载请注明原文地址:https://jikaoti.com/ti/imPRFFFM
0
考研数学一
相关试题推荐
求z=f(x,y)满足:dz=2xdx=4ydy且f(0,0)=5.求f(x,y)在区域D={(x,y)|x2+4y2≤4}上的最小值和最大值.
设二次型f=x12+x22+x32一4x1x2—4x1x3+2a2x3,经正交变换化为3y12+3y22+by32,求a,b的值及所用正交变换。
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证:f在条件x12+x22+…+x=1下的最大值恰好为矩阵A的最大特征值。
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型二次型g(x)=xTAx与f(x)的规范形是否相同?说明理由.
求微分方程的通解.
已知对于n阶方阵A,存在正整数k,使得Ak=O.试证明矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位矩阵).
求(U,V)的相关系数.
求函数y=的单调区间与极值,并求该曲线的渐近线.
已知极限.试确定常数n和c的值.
的值().
随机试题
设定和实施行政许可,应当遵循公开、公平、公正的原则。()
通过坐骨小孔的结构是
男性,65岁,剧烈咳嗽后突然出现左胸刀割样疼痛,觉气促、不能平卧。查体:左侧胸廓稍饱满,左侧触觉语颤减弱,左肺叩诊鼓音,呼吸音较右肺明显减弱。最可能的诊断是
称为“后天之本”的是( )。称为“罢极之本”的是( )。
下列有关此案的正确选项是( )。如果法院要给该外国公司送达调解书,可以采取的送达方式包括( )。
A公司和B公司于2011年5月20日签订合同,由A公司将一批平板电脑售卖给B公司。A公司和B公司营业地分别位于甲国和乙国,两国均为《联合国国际货物销售合同公约》缔约国。合同项下的货物由丙国C公司的“潇湘”号商船承运,装运港是甲国某港口,目的港是乙国某港口。
天然漆为我国特产,又称大漆或生漆。其下列特性哪一条是错的?[2004—038。2003—058,2001—056]
中国古代思想家荀子在论述“礼”的由来时曾说:人一生下来就有欲望,如果欲望得不到满足,那么就不会没有追求,如果追求没有限度和止境,那么就不能不起争夺,争夺就会导致混乱,混乱就会导致贫穷。根据上述说法可以推出:
试将f(x)=cosx展开成x的幂级数。
WhichplacedidtheAustralianteamcometoin1992BarcelonaOlympics?
最新回复
(
0
)