首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论方程2x3一9x2+12x—a=0实根的情况.
讨论方程2x3一9x2+12x—a=0实根的情况.
admin
2019-03-12
27
问题
讨论方程2x
3
一9x
2
+12x—a=0实根的情况.
选项
答案
令f(x)=2x
3
一9x
2
+12x-a,讨论方程2x
3
一9x
2
+12x-a=0实根的情况,即讨论函数f(x)零点的情况. 显然,[*].所以,欲讨论f(x)零点情况,应求函数f(x)=2x
3
一9x
2
+12x一a的极值,并讨论极值的符号. 由f’(x)=6x
2
一18x+12=6(x一1)(x一2)得驻点为x
1
=1,x
2
=2,又 f"(x)=12x一18,f"(1)<0,f"(2)>0, 得x
1
=1为极大值点,极大值为f(1)=5一a;x
2
=2为极小值点,极小值为f(2)=4—a. 当极大值f(1)=5一a>0,极小值f(2)=4一a<0,即4<a<5时,f(x)=2x
3
一9x
2
+12x一a 有三个不同的零点,即方程2x
3
一9x
2
+12x—a=0有三个不同的实根; 当极大值f(1)=5一a=0或极小值f(2)=4一a=0,即a=5或a=4时,f(x)=2x
3
一9x
2
+12x—a 有两个不同的零点,即方程2x
3
-9x
2
+12x一a=0有两个不同的实根; 当极大值f(1)=5-a<0或极小值f(2)=4-a>0,即a>5或a<4时,f(x)=2x
3
一9x
2
+12x-a 有一个零点,即方程2x
3
一9x
2
+12x一a=0有一个实根.
解析
转载请注明原文地址:https://jikaoti.com/ti/hcBRFFFM
0
考研数学三
相关试题推荐
设闭区域D={(x,y)|x2+y2≤y,x≥0},又f(x,y)为D上的连续函数,且求f(x,y).
求差分方程yt+1+7yt=16满足y0=5的特解.
设(X,Y)的联合分布函数为F(x,y)=其中参数λ>0,试求X与Y的边缘分布函数.
设X1,X2,…,X9是来自总体X~N(μ,4)的简单随机样本,而是样本均值,则满足P{|一μ|<μ}=0.95的常数μ=________.(φ(1.96)=0.975)
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,记Y=n(X1一2X2)2+b(3X3—4X4)2,其中a,b为常数,已知Y~χ2(n),则
随机地向半圆0<y<(a为正常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比,用X表示原点到该点连线与x轴正方向的夹角,求X的概率密度.
设A是5×4矩阵,r(A)=4,则下列命题中错误的为
设f(x)是区间上的正值连续函数,且K=∫01f(arctanx)dx.若把I,J,K按其积分值从小到大的次序排列起来,则正确的次序是
已知A是3阶矩阵,A的特征值为1,—2,3.则(A*)*的特征值为________.
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
随机试题
Foxesandfarmershavenevergotonwell.Thesesmalldog-likeanimalshavelongbeenaccusedofkillingfarmanimals.Theyare
医生和她所采取沟通方式,哪项不属于非语言沟通非浯言沟通方法有3种,动态的、静态的和副语言。下列哪项属于副语言
应用皮质激素治疗感染性休克时,其使用量为常规用量的
蛇咬伤中毒后的解救措施正确的是()。
(2008年)关于盐桥叙述错误的是()。
根据《担保法》的规定,质押合同的标的可以是( )。
关于诚实守信的说法,你认为正确的是()。
过程式知识表示法的优点是()。
阅读以下文字,回答下列问题。人是生物,要想健康地活着,必须保持体内的菌态平衡。人出生后,各种细菌便相继光顾到人体内,成为人体的终身伴侣。人体自身的细胞有百万亿个,而携带的微生物细胞是人体细胞的10倍。不要认为外来的生物是“异己”,它们也
Seekingto(i)______whatpeopleviewandreadbydeterminingwhatartandliteratureshouldbeavailable,censorshiplawsdirect
最新回复
(
0
)