设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.

admin2017-08-31  25

问题 设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.

选项

答案|λE—A|=[*]=(λ+A一1)(λ—a)(λ—a一1)=0,得矩阵A的特征值为λ1=1一a,λ2=a,λ3=1+a. (1)当1-a≠a,1一a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. [*] (2)当a=0时,λ13=1,因为r(E—A)=2,所以方程组(E一A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化.

解析
转载请注明原文地址:https://jikaoti.com/ti/hNVRFFFM
0

最新回复(0)