首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2017-08-31
30
问题
设A=
,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE—A|=[*]=(λ+A一1)(λ—a)(λ—a一1)=0,得矩阵A的特征值为λ
1
=1一a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1一a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. [*] (2)当a=0时,λ
1
=λ
3
=1,因为r(E—A)=2,所以方程组(E一A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/hNVRFFFM
0
考研数学一
相关试题推荐
设有一容器由平面z=0,z=1及介于它们之间的曲面S所同成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒vn体积单位的均匀速度往该容器注水,并假设开始时容器是空的.写出注水过程中t时刻
(2011年试题,二)若二次曲面的方程x2+3y2+z2+2axy+2xz+2yz=4.经正交变换化为y12+4z12=4则a=_____________.
[*]
若正项级数收敛,则().
设某人持有一个股票期权,那么他能在时刻T的一个固定的价格K买人一个单位的某种股票(如果他愿意的话).已知该股票每单位现在的价格为S(0)=y,未来时刻T的价格S(T)的百分比变化S(T)/S(0)服从参数为μ=0,δ2=T的对数正态分布,即S(T)=yeX
设三阶矩阵A的特征值为λ1=一1,λ2=2,λ3=4,对应的特征向量为ξ1,ξ2,ξ3,令P=(一3ξ2,2ξ1,5ξ3),则P-1(A*+2E)P等于().
(Ⅰ)设α1,α2,…,αn为n个n维线性无关的向量,且β与α1,α2,…,αn正交.证明:β=0;(Ⅱ)设α1,α2,…,αn-1为n一1个n维线性无关的向量,α1,α2,…,αn-1与非零向量β1,β2正交,证明:β1,β2线性相关.
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状,若它在进入大气层开始燃烧的前3s内,减少了体积的,问
设f(x)在(-∞,+∞)内二阶可导且>0,则>0,h1>0,h2>0,有
将f(x)=arctanx展开成x的幂级数.
随机试题
南戏与杂剧的不同之处有哪些?
降压时使心率加快的药物是( )。
患者,女性,60岁。慢性心力衰竭3年,服用呋塞米可导致
甲打算卖房,问乙是否愿买,乙一向迷信,就跟甲说:“如果明天早上7点你家屋顶上来了喜鹊,我就出10万块钱买你的房子。”甲同意。乙回家后非常后悔。第二天早上7点差几分时,恰有一群喜鹊停在甲家的屋顶上,乙正要将喜鹊赶走,甲不知情的儿子拿起弹弓把喜鹊打跑了,至7点
简述测定沥青混合料最大理论密度的试验步骤。
按照分业经营原则,就保险业而言,同一保险人不得兼营财产保险业务和人身保险业务,但是经营财产保险业务的保险公司经保险监督管理机构核准,可以经营()。
读下图,完成以下题。图中主体山脉的走向是()。
当前网络语言中有许多的“骂”,背后有不同的个人或社会原因,有的是因为对现实中的不公和腐败感到不满和愤怒,但又无可奈何、无能为力,骂成为他们疏通恶劣情绪的管道;有的是从骂中得到一种自由和解放的感觉;有的是因为觉得骂很“爽”很“酷”;有的是因为骂成了习惯。网骂
笔试:面试
A、Thewomanwonderedwhythemandidn’treturnthebook.B、Thewomandoesn’tseemtoknowwhatthebookisabout.C、Thewomando
最新回复
(
0
)