设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…). 证明:fn(x)=∫0xf0(t)(x-t)n-1dt(n=1,2,…);

admin2018-05-25  28

问题 设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).
证明:fn(x)=0xf0(t)(x-t)n-1dt(n=1,2,…);

选项

答案n=1时,f1(x)=∫0xf0(t)dt,等式成立; 设n=k时fk(x)=[*] ∫0xf0(t)(x-t)k-1dt, 则n=k+1时, [*] 由归纳法得fn(x)=[*]∫0xf0(t)(x-t)n-1dt(n=1,2,…).

解析
转载请注明原文地址:https://jikaoti.com/ti/hMKRFFFM
0

最新回复(0)