设S(x)=∫0x|cost|dt. (1)证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1); (2)求.

admin2016-10-13  30

问题 设S(x)=∫0x|cost|dt.
    (1)证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);
    (2)求

选项

答案(1)当nπ≤x<(n+1)π时,∫0|cost|dt≤∫0x|cost|dt<∫0(n+1)π|cost|dt, ∫0|cost|dt=n∫0π|cosx|dt=[*]=2n, ∫0(n+1)πcost|dt=2(n+1),则2n≤S(x)<2(n+1). (2)[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/gvwRFFFM
0

最新回复(0)