首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
admin
2020-03-16
24
问题
设非零n维列向量α,β正交且A=αβ
T
.证明:A不可以相似对角化.
选项
答案
令λ为矩阵A的特征值,X为λ所对应的特征向量,则AX=λX,显然A
2
X=λ
2
X, 因为α,β正交,所以A
2
=αβ
T
.αβ
T
=O,于是λ
2
X=0,而X≠0,故矩阵A的特征值为 λ
1
=λ
2
=…=λ
n
=0. 又由α,β都是非零向量得A≠O, 因为r(OE-A)=r(A)≥1,所以n-r(OE-A)≤n-1<n,所以A不可相似对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/grARFFFM
0
考研数学二
相关试题推荐
设4阶矩阵A满足A3=A.(1)证明A的特征值不能为0,1,和-1以外的数.(2)如果A还满足|A+2E|=8,确定A的特征值.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解。
求微分方程y’+ycosx=(lnx)e-sinx的通解.
设,求a,b
设0<x<1,证明:<4。
设f(x)连续,φ(x)=∫01f(xt)dt,且(A为常数),求φ’(x)并讨论φ’(x)在x=0处的连续性.
生产x单位某种商品的利润是x的函数:L(x)=5000+x-0.00001x2问生产多少单位时获得的利润最大?
[2016年]设D是由直线y=l,y=x,y=一x围成的有界区域,计算二重积分dxdy.
[2018年]设平面区域D由曲线(0≤t≤2π)与x轴围成,计算二重积分(x+2y)dxdy.
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
随机试题
“用寒远寒,用热远热”,属于
A、白昼时时汗出,动则尤甚B、寐中汗出,醒来自止C、冷汗如珠,气息微弱D、咳而汗出,痰黄质稠E、汗出色黄,染衣着色脱汗的特点是
一健康女婴,体重8kg。身长68cm,已能抓物,换手,独坐很久,能发复音,其最可能的月龄是
(2010年)在windows中,对存储器采用分段存储管理时,每一个存储器可以小全1个字节,大至()。
防、排烟系统或输送温度高于( )℃的空气或烟气,应采用耐热橡胶板或不燃的耐温、防火材料。
我国外汇挂钩类理财产品中,通常挂钩的一组或多组外汇的汇率大都依据()下午3时整,在路透社或彭博社相应的外汇展示页中的价格而厘定。
下列理财业务从业人员的行为中,违背了从业人员限制性条款的是()。
甲企业计划用一笔长期资金投资购买股票。现有M公司股票和N公司股票可供选择。已知M公司股票的系统风险是市场组合风险的1.2倍,现行市价为每股3元,上年每股股利为0.15元,预计以后每年以4%的增长率增长。N公司股票现行市价为每股3.22元,上年每股股利为0.
纵观世界流行音乐史,你会发现它基本上就是黑、白两种不同文化的融合史,而且总是由黑人提供原始素材,然后白人把它“偷”过来,并加以完善,最终作为一种崭新的商品推向全球。牙买加由于其特殊的地理位置,成为这一融合的最大受益者。这种模式也被顺理成章地推广到田径领域,
设,求An(n≥3).
最新回复
(
0
)