首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组Ⅰ:α1,α2,…,αr,可由向量组Ⅱ:β1,β2…,βs线性表示,则( )
设向量组Ⅰ:α1,α2,…,αr,可由向量组Ⅱ:β1,β2…,βs线性表示,则( )
admin
2021-02-25
44
问题
设向量组Ⅰ:α
1
,α
2
,…,α
r
,可由向量组Ⅱ:β
1
,β
2
…,β
s
线性表示,则( )
选项
A、当r<s时,向量组Ⅱ必线性相关
B、当r>s时,向量组Ⅱ必线性相关
C、当r<s时,向量组Ⅰ必线性相关
D、当r>s时,向量组Ⅰ必线性相关
答案
D
解析
本题考查一组向量能由另一组向量线性表示与它们秩的关系.要求考生掌握若向量组A能由向量组B线性表示,则r(A)≤r(B);向量组α
1
,α
2
,…,α
r
线性相关
r(α
1
,α
2
,…,α
r
)<r.
向量组Ⅰ的秩记为r(Ⅰ),Ⅱ的秩记为r(Ⅱ).由于向量组Ⅰ可由向量组Ⅱ线性表示,所以r(Ⅰ)≤r(Ⅱ)≤s,
若r>s,则有
r(Ⅰ)≤s<r,
故此时向量组Ⅰ必线性相关.故应选D.
也可用下述方法否定A、B、C.
令向量组Ⅰ、Ⅱ分别为
Ⅰ:(1,0,0),(0,1,0).
Ⅱ:(1,0,0),(0,1,0),(0,0,1).
显然,向量组Ⅰ可由向量组Ⅱ线性表示,且此时r=2<s=3,但向量组Ⅰ、Ⅱ均线性无关,故排除选项A、C.
令向量组Ⅰ、Ⅱ分别为
Ⅰ:(1,0,0),(2,0,0).
Ⅱ:(1,0,0).
显然,向量组Ⅰ可由向量组Ⅱ线性表示,且此时r=2>s=1,但向量组Ⅱ线性无关,故排除选项B.
转载请注明原文地址:https://jikaoti.com/ti/fjARFFFM
0
考研数学二
相关试题推荐
已知n阶矩阵A满足(A-aE)(A-bE)=0,其中a≠b,证明A可对角化.
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij←→ATA=E且|A|=1;(2)aij=一Aij←→ATA=E且|A|=一1.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
函数在区间[0,+∞)上
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
设f(x)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f’(a).f’(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0.
(1990年)证明:当χ>0,有不等式arctanχ+.
下列矩阵中不能相似对角化的是
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
随机试题
椿皮的功效包括()。
目前,()已成为房地产经纪从业人员获得客源的一个重要渠道。
建筑施工企业项目经理是受企业()委托,对工程项目施工过程全面负责的项目管理者。
建设工程项目质量控制系统是面向工程项目建立的质量控制系统,该系统()。
如果可转换证券市场价格在转换价格之下,购买该证券并立即转换为股票就有利可图。()
针对是否不在审计报告中沟通关键审计事项的情形,以下说法中,错误的是()。
提高全民族法治素养,增强全民法治观念,推进法治社会建设,使人民群众从内心拥护法律,需要健全普法宣传教育机制。下列哪一做法没有体现这一要求()。
根据以下资料。回答下列问题。下列各项中,按女性每天无酬劳动时间从长到短的顺序排列正确的是()。
某公司需要派员工参加全国的专业论坛,人员选派标准有以下几个注意点:(1)甲和乙两人至少要去一个人。(2)甲和丁不能一起去。(3)甲、戊、己三人中要派两人去。(4)乙、丙两人中去一个人。(5)丙、丁两人中去一个人。(6)若丁不去,则戊也不去。据
AsValentine’sDayapproaches,manysinglepeoplebegintofeelalittlesorryforthemselves.Onaday【C1】______bycouples,thi
最新回复
(
0
)