首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A |B)≤r(A)+r(B).
①设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A |B)≤r(A)+r(B).
admin
2018-08-12
30
问题
①设α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
都是n维向量组,证明r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)≤r(α
1
,α
2
,…,α
s
)+r(β
1
,β
2
,…,β
t
).
②设A和B是两个行数相同的矩阵,r(A |B)≤r(A)+r(B).
③设A和B是两个列数相同的矩阵,(
)表示A在上,B在下构造的矩阵.
证明r(*)≤r(A)+r(B).
选项
答案
这是3个互相等价的命题:①是②的向量形式;③是②的转置形式.因此对其中之一的证明就完成了这3个命题的证明. 证明①.取{α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
}的一个最大无关组(Ⅰ),记(Ⅰ)
t
是(Ⅰ)中属于α
1
,α
2
,…,α
s
中的那些向量所构成的部分组,(Ⅰ)
2
是(Ⅰ)中其余向量所构成的部分组.于是(Ⅰ)
1
和(Ⅰ)
2
分别是属于α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
的无关部分组,因此它们包含向量个数分别不超过r(α
1
,α
2
,…,α
s
)和r(β
1
,β
2
,…,β
t
).从而 r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)=(Ⅰ)中向量个数 =(Ⅰ)
1
中向量个数+(Ⅰ)
2
中向量个数 ≤r(α
1
,α
2
,…,α
s
)+r(β
1
,β
2
,…,β
t
).
解析
转载请注明原文地址:https://jikaoti.com/ti/fgWRFFFM
0
考研数学二
相关试题推荐
求
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
证明:当x>0时,(x2-1)lnx≥(x-1)2.
设周期为4的函数f(x)处处可导,且,则曲线y=f(x)在(-3,f(-3))处的切线为_______.
函数f(x)=x3-3x+k只有一个零点,则k的范围为().
设曲线y=,过原点作切线,求此曲线、切线及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的表面积.
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
计算积分:∫03(|x—1|+|x一2|)dx.
随机试题
“重过程,轻结果”是目前汽车销售管理过程中普遍存在的问题。()
TheInventorofLEDWhenNickHolonyaksetouttocreateanewkindofvisiblelightingusingsemiconductor(半导体)alloys(合金),
下列不是组织结构特征的是()
可作为磷脂骨架的化合物是
某男性,42岁,经健康危险因素评价得到评价年龄为50岁,增长年龄为49岁,则可以认为该男性的健康状况
下列选项中属于自动喷水灭火系统调试的是()。
不符合发票开具要求的是( )。
根据下列材料回答问题。据有关部分统计,2014年全国旅客运输总量为220.7亿人次,同比增长3.9%,其中,铁路运输总量为23.6亿人次.同比增长11.9%;公路运输量为190.5亿人次,同比增长2.8%;水运运输总量为2.6亿人次,同比增长12.3%;
Thecellphone,adevicewehavelivedwithformorethanadecade,offersagoodexampleofapopulartechnology’sunforeseensi
【B1】【B2】
最新回复
(
0
)