证明:当x>0时,(x2-1)lnx≥(x-1)2.

admin2015-06-30  23

问题 证明:当x>0时,(x2-1)lnx≥(x-1)2

选项

答案令φ(x)=(x2-1)lnx-(x-1)2,φ(1)=0. [*] 故x=1,为φ”(x)的极小值点,由其唯一性得其也为最小值点,而最小值为φ”(x)>0(x>0) [*] 故x=1为φ’(x)的极小值点,由其唯一性得其也为最小值点,而最小值为φ"(1)=2>0,故φ"(x)>0(x>0). 故x=1为φ(x)的极小值点,也为最小值点,而最小值为φ(1)=0, 所以x>0时,φ(x)≥0,即(x2-1)lnx≥(x-1)2

解析
转载请注明原文地址:https://jikaoti.com/ti/2lDRFFFM
0

最新回复(0)