首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=UTU,即A与单位阵E合同.
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=UTU,即A与单位阵E合同.
admin
2016-03-05
46
问题
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使A=U
T
U,即A与单位阵E合同.
选项
答案
必要性:因为对称阵A为正定的,所以存在正交矩阵P使P
T
AP=diag(λ
1
,λ
2
,…,λ
n
)=A,即A=PAP
T
,其中λ
1
,λ
2
,…,λ
n
为A的全部特征值,A是正定矩阵,λ
1
,λ
2
,…,λ
n
均为正数. 令[*]A=A
1
A
1
,A=PA
1
A
1
T
P
T
. 再令U=A
1
T
P
T
,则U可逆,且A=U
T
U故A与单位矩阵合同.充分性:若存在可逆矩阵U,使A=U
T
U,则对任意的x∈R
n
且x≠0,有‖Ux‖
2
>0,即f(x)=x
T
Ax=x
T
U
T
Ux=‖Ux‖
2
>0,矩阵A是正定矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/fUDRFFFM
0
考研数学二
相关试题推荐
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).若α=(1,2,-1)T,求Aα;
设随机变量X服从[0,2]上的均匀分布,Y服从参数为2的指数分布,且X与Y相互独立,令Z=X+Y,求EU和DU.
设n维列向量a=(a,0,…,0,a)T(a>0)且A=E-aaT,A-1=E+1/a·aaT,则a=________.
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=1,且a1+2a2=a3,A*是A的伴随矩阵.求方程组A*x=0的通解.
已知二次型f(x1,x2,x3)=xTAx的负惯性指数q=2,r(A)=3,且A2-2A-3E=0,A为实对称矩阵,则二次型在正交变换x=Qy下的标准形为()
设y=f(x)在x≥0上有严格单调递增的连续导函数,且f(0)=0,它的反函数为x=g(y),证明:不等式∫0af(x)dx+∫0bdy≥ab.
试求由直线x=1/2与抛物线y2=2x所围成的平面图形绕y=1旋转一周所得旋转体的体积和表面积.
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为().
已知点A(2,-1,7)沿向量a=(8,9,-12)的方向得线段AB,且|AB|=34,则点B坐标为________.
随机试题
马,高热,大汗,呼吸喘粗,口渴贪饮,尿短赤,口色鲜红,舌苔黄燥,脉洪大。该病可辨证为()
在调查前复习CPI指数时,王教授纠正了某研究生下面的哪一个错误
下列哪一项不会出现在空调系统中?
关于建设工程项目投资控制,说法正确的是()。
某一级公路全长55.28knl,双向4车道,路幅宽24.5m,设计车速80km/h,路面基层为水泥稳定土无机结合料基层,根据工程实际情况及施工单位人力、设备条件,施工单位采用了路拌法水泥稳定土基层施工工艺。摊铺水泥日进度1.5km(单向),K5+700~K
个人住房贷款的贷前调查中,对开发商资信调查的内容具体包括()。
儿童个体发展的规律有哪些?()
《二月提纲》(北京大学1995年中国现代史真题)
有人认为,在社会主义现代化建设过程中,只要物质文明好了,精神文明自然而然就上去了。试用历史唯物主义关于社会存在社会意识辩证关系的原理,并结合我国的实践,评析上述观点,阐明加强社会主义精神文明建设的意义。
IseethisprincipalalloverasIgothroughmyday.Iseerimsoncarwheelsthatcostupwardsof$500,justforalittlebit
最新回复
(
0
)