设f(t)连续并满足f(t)=cos2t+∫0tf(s)sinsds,求f(t).

admin2017-07-28  38

问题 设f(t)连续并满足f(t)=cos2t+∫0tf(s)sinsds,求f(t).

选项

答案因f(t)连续[*]∫0tf(s)sinsds可导[*]f(t)可导.于是,将题设等式两边求导可得 f’(t)=一2sin2t+f(t)sint,即f’(t)一f(t)sint=一2sin2t,又方程中令t=0得f(0)=1. 这是一阶线性微分方程的初值问题.将方程两边乘μ=e-∫sintdt=ecost可得 [ecostf(t)]’=一4sintcostecost 积分得 ecostf(t)=4∫costd(ecost)=4(cost一1)ecost+C. 由f(0)=1得C=e.因此,f(t)=e1-cost+4(cost一1).

解析
转载请注明原文地址:https://jikaoti.com/ti/fMwRFFFM
0

最新回复(0)