首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
设A是n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
admin
2016-10-26
32
问题
设A是n阶非零矩阵,A
*
是A的伴随矩阵,A
T
是A的转置矩阵,如果A
T
=A
*
,证明任一n维列向量均可由矩阵A的列向量线性表出.
选项
答案
因为A
*
=A
T
,按定义有A
ij
=a
ij
([*]i,j=1,2,…,n),其中A
ij
是行列式|A|中a
ij
的代数余子式. 由于A≠0,不妨设a
11
≠0,那么 |A|=a
11
A
11
+a
12
A
12
+…+a
1n
A
1n
=[*]≠0. 于是A=(α
1
,α
2
,…,α
n
)的n个列向量线性无关.那么对任一n维列向量β,恒有α
1
,α
2
,…,α
n
,β线性相关.因此β必可由α
1
,α
2
,…,α
n
线性表出.
解析
转载请注明原文地址:https://jikaoti.com/ti/eHwRFFFM
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
已知某产品的边际成本和边际收益函数分别为Cˊ(q)=q2-4q+6,Rˊ(q)=105—2q,固定成本为100,其中q为销售量,C(q)为总成本,R(q)为总收益,求最大利润.
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设f(x)可导,求下列函数的导数:
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
考虑二元函数的下面4条性质:①f(x,y)在点(xo,yo)处连续;②f(x,y)在点(xo,yo)处的两个偏导数连续;③f(x,y)在点(xo,yo)处可微;④f(x,y)在点(xo,yo)处的两个偏导数存在.若用“P→Q”表示
(1997年试题,三)在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为N,在t=0时刻已掌握新技术的人数为x0,在任意时刻t已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人数之积成正比,比例常数
设可微函数f(x,y)在点(xo,yo)处取得极小值,则下列结论正确的是().
飞机以匀速v沿y轴正向飞行,当飞机行到原点时被发现,随即从x轴上点(x0,y0)处发射导弹向飞机击去,其中x0>0.若导弹的速度方向始终指向飞机,其速度大小为常数2v.(Ⅰ)求导弹运行轨迹满足的微分方程及初始条件;(Ⅱ)求导弹的运行轨迹
随机试题
怎样矫正边缘翘曲?
在讨论这个问题之前,我要给你们读点东西。
符合子宫腺肌病的描述是
关于肾移植急性排斥反应的叙述,下列哪项是错误的?
下列各担保形式中,()是指将为债务提供的动产担保品存放在债权人处的行为。
男性和女性之间的工资性报酬差别的形成,不包括哪个原因()。
(2007年真题)公务员甲颇有才情,以本县三个招致群众非议的公共工程为背景,即兴创作一阕《沁园春.无题》词作,讥讽时弊,并通过手机短信发给十几个朋友,又通过QQ传给了几名网友。县公安局认为,该短信影响社会安定和政治稳定,遂以涉嫌诽谤罪将甲刑事拘留,后经县人
设a1,a1,…,an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn求可逆矩阵P,使P-1AP=A.
在PPT中,超级链接不能链接的目标是______。
若有以下程序段:intr=8:printf("%d\n",r>>1);输出结果是()。
最新回复
(
0
)