首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明: 存在η∈(a,b),使得f"(η)一3f’(η)+2f(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明: 存在η∈(a,b),使得f"(η)一3f’(η)+2f(η)=0.
admin
2015-07-24
31
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,
.证明:
存在η∈(a,b),使得f"(η)一3f’(η)+2f(η)=0.
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0, 而g’(x)=e
-x
[f’(x)一f(x)]且e
-x
≠0,所以f’(η
1
)一f(η
1
)=0,f’(η
2
)一f(η
2
)=0. 令φ(x)=e
-2x
[f’(x)一f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ’(η)=0, 而φ’(x)=e
-2x
[f"(x)一3f’(x)+Zf(x)]且e
-2x
≠0, 所以f"(η)一3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/eHPRFFFM
0
考研数学一
相关试题推荐
设f(x)二阶连续可导,且f(0)=1,f(2)-3,f’(2)=5,则∫01xf"(2x)dx=________.
已知
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在且非零,证明:存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f’(η)ln2.
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)-f(ξ)=f(2)-2f(1).
求的最大项.
设f(x)与g(x)在x=0的某邻域内连续,f(0)=g(0)≠0,求
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意的x∈(一∞,+∞)f’(x)都存在,并求f(x)。
设二元函数f(x,y)=|x-y|ψ(x,y),其中ψ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是ψ(0,0)=0.
,求f(x)的间断点并对其分类。
求{}的最大项.
随机试题
「あのとき、下の子が教えてくれなかったら、お姉ちゃんのジーンズ、________。そう、今はデニムって言うのよね。あんな穴だらけの穿いて、何がおしゃれなんだか…。」
手术前预防性使用抗生素的最佳时间为()
女患者,结婚3年未避孕未孕,月经周期基本正常,量少色红,无血块,形体消瘦,腰腿痠软,头晕眼花,心悸失眠,五心烦热。治宜:
唾液,俗称“口水”,是由唾液腺分泌出来的,它的主要生理作用包括()。
胡某于2006年3月10日向李某借款100万元,期限3年。2009年3月30日,双方商议再借100万元,期限3年。两笔借款均先后由王某保证,未约定保证方式和保证期间。李某未向胡某和王某催讨。胡某仅于2010年2月归还借款100万元。关于胡某归还的100万元
阅读下面的学生作文,回答以下问题。案例:厚积厚发①苏东坡说:“博观而约取,厚积而薄发。”“博观而约取”没有问题,“厚积而薄发”则是一种
卡特尔根据对智力测验结果的分析,将处理数字系列、空间视觉感和图形矩阵项目时所需的能力称为()。
2008~2013年,高收入户的城镇居民平均人均可支配收人年均()元。
科学揭示燃烧现象的是:
Americanculturehasnotbeenimmunetoculturalinfluencesfromoutside.TheideaofdemocracycamefromtheancientGreeks;th
最新回复
(
0
)