首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α2+α2)线性无关的充分必要条件是( )
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α2+α2)线性无关的充分必要条件是( )
admin
2018-01-26
25
问题
设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
,则α
1
,A(α
2
+α
2
)线性无关的充分必要条件是( )
选项
A、λ
1
≠0。
B、λ
2
≠0。
C、λ
1
=0。
D、λ
2
=0。
答案
B
解析
设k
1
α
1
+k
2
A(α
1
+α
2
)=0,由题设条件得(k
1
+λ
1
k
2
)α
1
+λ
2
k
2
α
2
=0,由于α
1
,α
2
是属于A的不同特征值的特征向量,故α
1
,α
2
线性无关,从而
所以,α
1
,A(α
1
+α
2
)线性无关
k
1
=k
2
=0
行列式
λ
2
≠0,即选项(B)正确。
转载请注明原文地址:https://jikaoti.com/ti/e9VRFFFM
0
考研数学一
相关试题推荐
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路程
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(II)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中,正确的是()
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T;β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.求β1,β2,β3到α1,α2,α3的过渡矩阵;
设二维随机变量(X,Y)服从区域-1≤x≤1,0≤y≤2上的均匀分布,求二次曲面x12+2x22+Yx32+2x1x2+2Xx1x3=1为椭球面的概率。
设矩阵Am×n经过若干次初等行变换后得到B,现有4个结论,其中正确的是()①A的行向量均可由B的行向量线性表示;②A的列向量均可由B的列向量线性表示;③B的行向量均可由A的行向量线性表示;④B的列向量均可由A的列向量线性表示。
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ξ,使.
设y=y(x)(x>0)是微分方程2yˊˊ+yˊ-y=(4—6x)e-x的一个解,且求y(x),并求y=y(x)到x轴的最大距离
(2014年)设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上()
(2017年)设函数f(u,v)具有二阶连续偏导数,y=f(ex,cosx),求
随机试题
IsthatFolgerscoffeeinyourcuporMaxwellHouse?Nowyounolongerhavetorelyonyournosetotell.Researchershavedevel
《食品卫生法》规定,食品卫生监督执法的主体为
偏头痛是指()。
场(厂)址比较的内容不包括()。
设备安装阶段主要监理工作主要内容有以下( )方面。
在建筑设备监控工程中,模拟信号的传送应采用()敷设。
海上假日系三星级酒店。该酒店人力资源管理部门近日通过调查发现:酒店基层员工近期工作效率下滑、缺勤率上升、工作积极性下降,基层员工与客户的不和谐事件也凸显上升趋势。下面是该人力资源部门究其原因所做的定性分析。根据以上资料,回答下列问题:酒店现行
党在过渡时期总路线是“一化三改”、“一体两翼”的路线,它的主体任务是逐步实现()。
Completetheflow-chartbelow.ChooseSIXanswersfromtheboxandwritethecorrectletter,A-l,nexttoquestions21-26.Aact
Issuesconcerninghumanlearningareamongthecriticaltopicsineducationalpsychology,childdevelopment,andcognitivescie
最新回复
(
0
)