假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ξ,使.

admin2016-01-15  32

问题 假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:
    (1)在开区间(a,b)内g(x)≠0;
    (2)在开区间(a,b)内至少存在一点ξ,使

选项

答案(1)利用反证法.假设存在c∈(a,b),使得g(c)=0,则对g(x)在[a,c]和[c,b]上分别应用罗尔中值定理,可知存在ξ1∈(a,c)和ξ2∈(c,b),使得g’(ξ1)=g’(ξ2)=0成立. 接着再对g’(x)在区间[ξ,ξ]上应用罗尔中值定理,可知存在ξ∈(ξ,ξ),使得g"(ξ)=0成立,这与题设条件g"(x)≠0矛盾,因此在开区间(a,b)内,g(x)≠0. (2)构造函数F(x)=f(x)g’(x)一g(x)f’(x),由题设条件得函数F(x)在区间[a,b]上是连续的,在区间(a,b)上是可导的,且满足F(a)=F(b)=0.根据罗尔中值定理可知,存在点ξ∈(a,b),使得F’(ξ)=0. 即 f(ξ)g"(ξ)—f"(ξ)g(ξ)=0, 因此可得 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/vnPRFFFM
0

最新回复(0)