首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
admin
2015-06-29
33
问题
设α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性无关,而向量组α
1
,α
2
,…,α
m
,γ线性相关.证明:向量γ可由向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性表示.
选项
答案
因为向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性无关,所以向量组α
1
,α
2
,…,α
m
也线性无关,又向量组α
1
,α
2
,…,α
m
,γ线性相关,所以向量γ可由向量组α
1
,α
2
,…,α
m
线性表示,从而γ可由向量组α
1
,α
2
,…,α
m
,β
1
,β
2
,…,β
n
线性表示.
解析
转载请注明原文地址:https://jikaoti.com/ti/e7cRFFFM
0
考研数学一
相关试题推荐
设a0,a1,…,an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn,求可逆矩阵P,使P-1AP=A.
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.根据(1)中的矩阵B,证明A与B相似;
设矩阵有三个线性无关的特征向量,λ=2是A的二重特征值,求可逆矩阵P使得P-1AP=A,其中A是对角矩阵.
设A是m×n矩阵,B是n×m矩阵,已知Em+AB可逆.设,其中a1b1+a2b2+a3b3=0,证明W可逆,并求W-1.
设B=2A-E,证明B2=E的充分必要条件是A2=A.
设A,B为n阶矩阵,E为n阶单位矩阵.利用(1)的结果证明
设A为4阶矩阵,满足等式(A-E)2=0,证明A可逆,并给出A-1.
设,B为同阶可逆矩阵,证明方程组BAx=0与Ax=0同解,并求解方程组BAx=0.
设线性方程组添加一个方程ax1+2x2+bx3-5x1=4=0后,成为方程组a,b满足什么条件时,方程组(*),(**)是同解方程组.
随机试题
中国第一个专门的环境保护机构的组建时间是()
葡萄胎声像图上宫腔内有多数直径3~5mm无回声囊泡,最大可能是
甲乙丙三国均为南极地区相关条约缔约国,甲国在加入条约前,曾对南极地区的某区域提出过领土要求。乙国在成为条约缔约国后,在南极建立了常年考察站。丙国利用自己靠近南极的地理优势,准备在南极大规模开发旅游。根据《南极条约》和相关制度,下列哪些判断是正确的?(201
国家安全机关在办理危害国家安全的刑事案件时,享有下列哪些职权?()
6C标准原则的内容不包括()。
下列关于税务机关实施税收保全措施的表述中,错误的是()。
作为调节社会经济运行的一种重要经济杠杆,提高税率通常将()。
下列最可能涉及对物质的化学性质描写的是:
在某一次演出中,全部独唱演员必须演唱7首歌,每首歌只允许唱1次。歌从1~7连续编号。参加该演出的是一演唱组的3个成员张、刘和王,他们必须遵守以下规则:演唱必须从第1首歌开始,按7首歌的编号连续进行;张和王既可以唱奇数号的歌又可以唱偶数号
EnglishasaGlobalLanguageI.EnglishisagloballanguageIt’swidelyusedineconomic,political,andscientificfields
最新回复
(
0
)