首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个n阶实矩阵,使得AT+A正定,证明A可逆.
设A是一个n阶实矩阵,使得AT+A正定,证明A可逆.
admin
2017-10-21
27
问题
设A是一个n阶实矩阵,使得A
T
+A正定,证明A可逆.
选项
答案
矩阵可逆,有好几个充分必要条件,本题从哪个条件着手呢?行列式不好用,虽然A
T
+A正定可得|A
T
+A|≠0,但是由此不能推出|A|≠0.用秩也不好下手.用“AX=0没有非零解”则切合条件. 设n维实列向量α满足Aα=0,要证明α=0. α
T
(A
T
+A)α=α
T
A
T
α+α
T
Aα=(Aα)
T
α+α
T
Aα=0. 由A
T
+A的正定性得到α=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/dsSRFFFM
0
考研数学三
相关试题推荐
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得∈f’(ξ)一f(ξ)=f(2)一2f(1).
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中(1)求正交变换X=QY将二次型化为标准形;(2)求矩阵A.
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P—1AP为对角阵.
证明:D=
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设A为m阶正定矩阵,B为m×n实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A是3阶方阵,A*是A的伴随矩阵,A的行列式,求行列式∣(3A)-1一2A*的值.
设A为m×n实矩阵,E为n阶单位矩阵。已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵。
随机试题
铜及铜合金焊接前工件常需要预热,预热温度一般为()。
3/4in(英寸)=()mm。
事业单位的下列固定资产,按规定不应计提折旧的是()。
甲公司2016年度与租赁相关交易或事项如下:(1)甲公司为扩大生产规模,决定从乙公司租入一台专用生产设备。2015年11月11日双方签订租赁合同,主要条款包括:租赁期自2016年1月1日起至2019年12月31日共4年;自租赁开始日起,甲公司每年年末向乙
中小学班主任管理班级的方式一般分为三种类型,即()。
甲、乙两车分别从A、B两城同时相对开出,7小时后相遇,相遇后继续前进2小时,这时甲车距B城还有240千米,乙车距A城还有360千米。A、B两城相距多少千米?
新闻敲诈产生的原因及解决措施。(南京大学,2013)
下列关于法律关系的表述不能成立的是
古稀之年指的是什么?
Icouldn’tstopcrying.Monthsoflateeveningsanddemandingtravelhad【C1】______myprofessionalexterior.Itriedto【C2】______
最新回复
(
0
)