首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 的系数矩阵为A= 设Mi(i=1,2,…,n)是A中划去第i列所得到的n-1阶子式。证明: (Ⅰ)(M1,-M2,…,(-1)n-1Mn)是方程组的一个解向量; (Ⅱ)如果A的秩为n-1,则方程组的所有解向量是(M1,-M2,…,(-1
设齐次线性方程组 的系数矩阵为A= 设Mi(i=1,2,…,n)是A中划去第i列所得到的n-1阶子式。证明: (Ⅰ)(M1,-M2,…,(-1)n-1Mn)是方程组的一个解向量; (Ⅱ)如果A的秩为n-1,则方程组的所有解向量是(M1,-M2,…,(-1
admin
2019-05-14
31
问题
设齐次线性方程组
的系数矩阵为A=
设M
i
(i=1,2,…,n)是A中划去第i列所得到的n-1阶子式。证明:
(Ⅰ)(M
1
,-M
2
,…,(-1)
n-1
M
n
)是方程组的一个解向量;
(Ⅱ)如果A的秩为n-1,则方程组的所有解向量是(M
1
,-M
2
,…,(-1)
n-1
M
n
)的倍数。
选项
答案
(Ⅰ)作n阶行列式 D
i
=[*],i=1,2,…,n-1。 因为D
i
的第一行与第i+1行是相同的,所以D
i
=0。 D
i
的第一行元素的代数余子式依次为M
1
,-M
2
,…,(-1)
n-1
M
n
,将D
i
按第一行展开,得 a
i1
M
1
+a
i2
(-M
2
)+…+a
in
[(-1)
n-1
M
n
]=0,(i=l,2,…,n-1), 这说明(M
1
,-M
2
,…,(-1)
n-1
M
n
)满足第i(i=1,2,…,n-1)个方程,故它是方程组的一个解。 (Ⅱ)因为R(A)=n-1,所以方程组的基础解系所含解向量的个数为n-(n-1)=1,同时因为R(A)=n-1,说明A中至少有一个(n-1)阶子式≠0,即M
1
,M
2
,…,M
n
不全为0,于是(M
1
,-M
2
,…,(-1)
n-1
M
n
)是方程组的一个非零解,它可作为方程组的一个基础解系。故方程组的解都是(M
1
,-M
2
,…,(-1)
n-1
M
n
)的倍数。
解析
转载请注明原文地址:https://jikaoti.com/ti/djoRFFFM
0
考研数学一
相关试题推荐
计算,其中∑为下半球面z=一的上侧,a为大于0的常数。
计算I=(x2+y2)zds,其中为锥面螺线x=tcost,y=tsint,z=t上相应于t从0变到1的一段弧。
设(X,Y)是二维随机变量,且随机变量X=X+Y,X2=X-Y,已知(X1,X2)的概率密度函数为f(χ1,χ2)=(Ⅰ)求X与Y的边缘概率密度;(Ⅱ)计算X与Y的相关系数ρXY.
自动生产线在调整后出现废品的概率为p(0<P<1),当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的概率分布、数学期望和方差.
设随机变量X服从参数为λ的指数分布,Y=eX,求Y的概率密度.
设A=,向量α=是矩阵A-1属于特征值λ0的特征向量,若|A|=-2,求a,b,c及λ0的值.
求曲面积分I=χdydz+y2dzdχ,其中∑是曲面z=χ2+y2满足z≤χ的部分,取下侧.
设总体X的概率分布为,其中p(0<p<1)是未知参数,又设x1,x2,…,xn是总体X的一组样本观测值.试求参数p的矩估计量和最大似然估计量;
设随机事件A,B及A∪B的概率分别为0.4,0.3和0.6,则P(A)=_______.
(1997年)设则F(x)
随机试题
伦敦股票市场上的组成包括()
患者,女,30岁。1周来发热、尿频、尿急、尿痛伴腰痛,既往无类似病史。查体:体温38.3cC,心肺检查未见异常,腹软,肝脾肋下未触及,双肾区有叩击痛。化验:尿蛋白(+),白细胞30~50/HP,可见白细胞管型。对该患者最可能的诊断是
口服铁剂治疗有效的缺铁性贫血患者,下列化验中,最先上升的是
甲涉嫌过失致人重伤。在审查起诉阶段,检察院认为证据不足,遂作出不起诉决定。如果被害人对不起诉决定不服,依法可以采取下列哪些诉讼行为?
对于干硬性混凝土拌合物(坍落度小于l0mm),其和易性指标采用()。
工业企业的工程物资是一种流动资产。()
下列各项中,不属于证券经纪业务特点的是()。
耦合效应也称互动效应,是指群体中两个或以上的个体通过相互作用而彼此影响从而联合起来产生增力的现象。根据上述定义,下列不属于耦合效应的是()。
设随机变量X的概率密度为F(x)是X的分布函数.求随机变量Y=F(X)的分布函数.
ThefamilyisthecenterofmosttraditionalAsians’lives.Manypeopleworryabouttheirfamilieswelfare,reputation,andhono
最新回复
(
0
)