首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ),g(χ)在[a,b]上二阶可导,g〞(χ)≠0,f(a)=f(b)=g(a)=g(b)=0. 证明:(Ⅰ)g(χ)≠0,任意χ∈(a,b); (Ⅱ)存在ξ∈(a,b),使.
设f(χ),g(χ)在[a,b]上二阶可导,g〞(χ)≠0,f(a)=f(b)=g(a)=g(b)=0. 证明:(Ⅰ)g(χ)≠0,任意χ∈(a,b); (Ⅱ)存在ξ∈(a,b),使.
admin
2020-12-17
48
问题
设f(χ),g(χ)在[a,b]上二阶可导,g〞(χ)≠0,f(a)=f(b)=g(a)=g(b)=0.
证明:(Ⅰ)g(χ)≠0,任意χ∈(a,b);
(Ⅱ)存在ξ∈(a,b),使
.
选项
答案
(Ⅰ)反证法. 若不然,则在(a,b)内至少存在一点c,使g(c)=0,于是由已知条件知,g(χ)在[a,c]与[c,b]上满足罗尔定理条件.分别应用罗尔定理,得ξ
1
∈(a,c),ξ
2
∈(c,b),使 g′(ξ
1
)=0,g′(ξ
2
)=0, 于是g′(χ)在[ξ
1
,ξ
2
]上满足罗尔定理条件,进一步应用罗尔定理,存在η∈(ξ
1
,ξ
2
)[*](a,b),使g〞(η)=0,这与条件g〞(χ)≠0,χ∈(a,b)矛盾. 故g(χ)≠0,χ∈(a,b). (Ⅱ)令F(χ)=f(χ)g′(χ)-f(χ)g(χ),则F(χ)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,满足罗尔定理条件.对F(χ)应用罗尔定理,于是存在ξ∈(a,b),使F′(ξ)=0,即 F′(ξ)=[f′(χ)g′(χ)+f(χ)g〞(χ)-f′(χ)g′(χ)-f〞(χ)g(χ)]|
χ=ξ
=f(ξ)g〞(ξ)-f〞(ξ)g(ξ)=0, 由于g(ξ)≠0,g〞(ξ)≠0,所以 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/dDaRFFFM
0
考研数学三
相关试题推荐
[2010年]设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则().
[2004年]设级数的和函数为s(x),求:(1)s(x)所满足的一阶微分方程;(2)s(x)的表达式.
[2008年]设银行存款的年利率为r=0.05,并依年复利计算,某基金会希望通过存款A万元,实现第一年提取19万元,第二年提取28万元,…,第n年提取(10+9n)万元,并按此规律一直提取下去,问A至少应为多少万元?
设f(x)有二阶连续导数,且f’(0)=0,.则()
设随机变量X与Y相互独立且都服从参数为λ的指数分布,则下列随机变量中服从参数为2λ的指数分布的是().
设(X1,X2,…,Xn)(n≥2)为标准正态总体X的简单随机样本,则().
设随机变量X服从参数为1的指数分布。记Y=max{X,1},则E(Y)=()
曲线的渐近线有()
设总体X~N(a,σ2),Y~N(b,σ2)相互独立,分别从X和Y中各抽取容量为9和10的简单随机样本,记它们的方差为SX2和SY2,并记,则这四个统计量SX2,SY2,S122,SXY2中,方差最小者是()
设总体X服从正态分布N(μ,σ2),X1,X2,…,Xn(n>1)是取自总体的简单随机样本,样本均值为()
随机试题
在“万国交通”的形势下,曾国藩也主张不应一切拘泥于成法,在某些方面应稍事变通,但他认为万不能变的是()
某小型企业的会计主管岗位基本职责是
下列作品集属于张养浩的是()
对于长期输液的患者,应先从()远心端静脉开始使用,逐渐向()移动,做到有计划使用静脉。
食管癌最简单易行的诊断方法是()
王某,男,26岁,因上腹部突发剧痛4小时入院。病人5年来反复发作中、上腹疼痛伴反酸、嗳气,进食或服碱性药物后缓解,4小时前饮酒后突然中、上腹偏右处剧烈刀割样疼痛,伴冷汗、心悸、恶心、呕吐,急诊入院。体格检查:T36℃,P100次/分,R24次/分,
一个完整的会计软件系统必定包括()功能子系统,其他功能模块直接或间接与它进行联系。
下列各项中,属于适用预约定价安排需要同时满足的条件有()。
InanOctober2008report,theCenterforDiseaseControlplacedtheU.S.29thininfantmortality.tiedwithSlovakiaandPola
VanGogh______asoneofthemostinfluentialartistintheworld.
最新回复
(
0
)