首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知(1,-1,1,-1)T是线性方程组的一个解,试求 (1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (2)该方程组满足χ2=χ3的全部分.
已知(1,-1,1,-1)T是线性方程组的一个解,试求 (1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (2)该方程组满足χ2=χ3的全部分.
admin
2019-07-22
37
问题
已知(1,-1,1,-1)
T
是线性方程组
的一个解,试求
(1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;
(2)该方程组满足χ
2
=χ
3
的全部分.
选项
答案
将解向量χ=(1,-1,1,-1)
T
代入方程组,得λ=μ.对方程组的增广矩阵施行初等行变换: [*] (1)当λ≠[*]时,有 [*] 因r(A)=r([*])=3<4,故方程组有无穷多解,全部解为 χ=(0,-[*],0)
T
+k(-2,1,-1,2)
T
,其中k为任意常数. 当λ=[*]时,有[*] 因r(A)=r([*])=2<4,故方程组有无穷多解,全部解为 χ=(-[*],1,0,0)
T
+k
1
(1,-3,1,0)
T
+k
2
(-1,-2,0,2)
T
,其中k
1
,k
2
为任意常数. (2)当A≠[*]时,由于χ
1
=χ
2
,即[*]-k,解得k=[*],故此时,方程组的解为χ=[*](-2,1,-1)
T
=(-1,0,0,1)
T
. 当λ=[*]时,由于χ
2
=χ
3
,即1-3k
1
-2k
2
=k
1
,解得k
2
=[*]-2k
1
,故此时全部解为χ=(-[*],1,0,0)
T
+k
1
(1,-3,1,0)
T
+([*]-2k
1
)(-1,-2,0,2)
T
=(-1,0,0,1)
T
+k
1
(3,1,1,-4)
T
.
解析
转载请注明原文地址:https://jikaoti.com/ti/d6ERFFFM
0
考研数学二
相关试题推荐
设f(χ)在[0,1]上连续,且f(χ)=+∫01χf(χ)dχ,则f(χ)=_______.
=_______.
设向量组α1,α2,α3,α4线性无关,则向量组().
设n维行向量α=(,0,…,0,),A=E-αTα,B=E+2αTα,则AB为().
设函数f(χ)在|χ|<δ内有定义且|f(χ)|≤χ2,则f(χ)在χ=0处().
二阶常系数非齐次线性微分方程y〞-2y′-3y=(2χ+1)e-χ的特解形式为().
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r。的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
设函数f(χ)在[0,a]上连续,在(0,a)内二阶可导,且f(0)=0,f〞(χ)<0,则在(0,a]上().
设f(x)在[a,b]上连续,在(a,b)内可导.试证明:拉格朗日微分中值定理:至少存在一点ξ∈(a,b)使
随机试题
属于现病史的内容有
患者,男性,突发腹痛,剧烈难思,查体发现肝浊音界消失,该患者的诊断可能是
常用酒炙的药材有()。
下列项目中,屈于股票应裁明的事项有()。
如果将β为0.75的股票增加到市场组合中,那么市场组合的风险()。
关于一般纳税人缴纳增值税的说法,正确的是()。
倾听是指()。
流注理论未考虑()现象。
关于海洋表面盐度的叙述,正确的是()。
关于习近平法治思想,下列说法正确的有几项?()①其深刻回答了新时代为什么实行全面依法治国、怎样实行全面依法治国等一系列重大问题②其是马克思主义法治理论中国化的最新成果③其是中国特色社会主义法治理论的重大创新
最新回复
(
0
)