首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(a)=0,g’(a)=0是F(x)在x=a处可导的( )
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g’(a)存在,则g(a)=0,g’(a)=0是F(x)在x=a处可导的( )
admin
2019-08-12
37
问题
设F(x)=g(x)φ(x),x=a是φ(x)的跳跃间断点,g
’
(a)存在,则g(a)=0,g
’
(a)=0是F(x)在x=a处可导的( )
选项
A、充分必要条件。
B、充分非必要条件。
C、必要非充分条件。
D、非充分非必要条件。
答案
A
解析
因φ(x)在x=a处不可导,所以不能对F(x)用乘积的求导法则,需用定义求F
’
(a)。题设φ(x)以x=a为跳跃间断点,则存在
,A
+
≠A
-
。
当g(a)=0时,
下面证明若F
’
(a)存在,则g(a)=0。
反证法,若g(a)≠0,φ(x)=
,由商的求导法则,φ(x)在x=a可导,这与题设矛盾,则g(a)=0,g
’
(a)=0是F(x)在x=a处可导的充要条件。故选A。
转载请注明原文地址:https://jikaoti.com/ti/cCERFFFM
0
考研数学二
相关试题推荐
(10)没A=已知线性方程组Ax=b存在2个不同的解.(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解.
(11)设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为-12.(1)求a、b的值;(2)利用正交变换将二次型f化为标准形.并写出所用的正交变换和对应的正交矩阵
已知ξ=是矩阵A=的一个特征向量.(1)试确定a,b的值及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
已知线性方程组的一个基础解系为:(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的通解,并说明理由.
已知齐次线性方程组其中。试讨论a1,a2,…,an和b满足何种关系时:(I)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系。
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为求:f(x)的极值.
求曲线y=的上凸区间.
设随机变量X和Y相互独立,且X的概率分布为Y的概率密度为f(y),求Z=X+Y的概率密度fZ(z).
设f(x)可导,f(x)=0,f’(0)=2,F(x)=∫0xt2f(x3-t3)dt,则当x→0时,F(x)是g(x)的()
随机试题
利害关系人在除权判决作出之后,若有正当理由说明自己不能在判决前向人民法院申报权利的,自知道或应当知道判决公告之日起()内,可以向作出判决的人民法院提起诉讼。
构成推荐性国家标准的要件是()。
一个R=13.7Ω、L=0.25mH的电感线圈,与C=100pF的电容器接成串联谐振电路时阻抗为13.7Ω;与C=100pF的电容器接成并联谐振电路时电路呈现的阻抗为()。
凡是三栏式账簿在摘要栏和借方科目栏之间均有“对方科目”一栏。()
下列各项中,不通过“其他应收款”科目核算的是()。
根据《物权法》的规定,最高额抵押权所担保的债权得以确定的情形包括()。
[*]
设a,b和c都是整型,且值都是5,执行a+=b+c++;则a,b和c的结果分别是【】。
Oldfriends,theyfinishyoursentences,theyrememberthecatthatranawaywhenyouweretwelve,andtheytellyouthetruthw
HowAdvertisementIsDone?A)Whenwechooseawordwedomorethangiveinformation;wealsoexpressourfeelingsaboutwha
最新回复
(
0
)