设二次型f(x1,x2,x3) =2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.

admin2016-01-11  40

问题 设二次型f(x1,x2,x3)
=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记

若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22

选项

答案记A=2ααT+ββT,因为α,β正交且均为单位向量,所以Aα=(2ααT+ββT)α=2α,Aβ=(2ααT+ββT)β=β,于是λ1=2,λ2=1是矩阵A的特征值,又r(A)=r(2ααT+ββT)≤r(2ααT)+r(ββT)≤2.所以λ3=0是A的另一特征值,故f在正交变换下的标准形为2y12+y22

解析
转载请注明原文地址:https://jikaoti.com/ti/b9DRFFFM
0

随机试题
最新回复(0)