首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设x=rcosθ,y=rsinθ,将如下直角坐标系中的累次积分化为极坐标系中的累次积分.
设x=rcosθ,y=rsinθ,将如下直角坐标系中的累次积分化为极坐标系中的累次积分.
admin
2016-10-20
40
问题
设x=rcosθ,y=rsinθ,将如下直角坐标系中的累次积分化为极坐标系中的累次积分.
选项
答案
本题中积分区域如图4.16中阴影部分所示. [*] 将其化为极坐标,可知θ∈[*].由于y=1-x可表示为rsinθ=1-rcosθ,即r=[*]而y
2
=2x-x
2
可表示为r=2cosθ,故[*]≤r≤2cosθ.从而原积分可化为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/aoxRFFFM
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=x12+x22+x32-4x2x3的正惯性指数为().
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
如果n个事件A1,A2,…,An相互独立,证明:
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
证明下列不等式:
设∑是空间有界闭区域Ω的整个边界曲面,u(x,y,z),v(x,y,z)∈C(2)(Ω),分别表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数,证明:
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
随机试题
根据动液面的高度和液体的相对密度,可推算油井()。
柳永是南宋专力写词的作家。()
16岁男性患者,咽痛7天后出现浮肿2周,尿蛋白2.0g/24h,红细胞10个/HP,上述情况最可能是哪种病的表现
男,28岁,轻咳2个月,有盗汗。胸片如图下列哪项检查可确诊本病
有一名出生后6天的男孩,早产2周,双侧大腿外侧皮肤发硬,肿胀,压久轻度凹陷,经医生检查诊断为新生儿硬肿症,治疗原则不包括
商业银行发挥支付中介职能,对社会经济产生的作用包括()。
某果农要用绳子捆扎甘蔗,有三种规格的绳子可供使用:长绳子1米,每根能捆7根甘蔗;中等长度绳子0.6米,每根能捆5根甘蔗;短绳子0.3米,每根能捆3根甘蔗。果农最后捆扎好了23根甘蔗。则果农总共最少使用多少米的绳子?()
(2018年吉林)发源于长白山的松花江滋养了东北大地,与东北人的生活息息相关。下列关于松花江表述错误的是()。
TrafficJams—NoEndinSight1.Trafficcongestion(拥堵)affectspeoplethroughouttheworld.Trafficjamscausesmogindozens
Peopleineveryworkplacetalkaboutorganizationalculture,themysteriouswordthatcharacterizesaworkenvironment.Oneof
最新回复
(
0
)