首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,且x0∈(a,b)使得又f(x0)>0(<0),<0(>0)(如图4.13),求证:f(x)在(a,b)恰有两个零点.
设f(x)在(a,b)内可导,且x0∈(a,b)使得又f(x0)>0(<0),<0(>0)(如图4.13),求证:f(x)在(a,b)恰有两个零点.
admin
2018-06-27
24
问题
设f(x)在(a,b)内可导,且
x
0
∈(a,b)使得
又f(x
0
)>0(<0),
<0(>0)(如图4.13),求证:f(x)在(a,b)恰有两个零点.
选项
答案
由[*]x
1
∈(a,x
0
)使f(x
1
)<0,[*]x
2
∈(x
0
,b)使f(x
2
)<0,则f(x)在(x
1
,x
0
)与(x
0
,x
2
)内各存在一个零点. 因f’(x)>0([*]∈(a,x
0
)),从而f(x)在(a,x
0
)单调增加;f’(x)<0([*]∈(x
0
,b)),从而f(x)在(x
0
,b)单调减少.因此,f(x)在(a,x
0
),(x
0
,b)内分别存在唯一零点,即在(a,b)内恰有两个零点.
解析
转载请注明原文地址:https://jikaoti.com/ti/a7dRFFFM
0
考研数学二
相关试题推荐
设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0(x∈(a,b)),求证:若在(a,b)单调增加,则在(a,b)单调增加.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0(x∈(a,b)),求证:对使得;
设D={(x,y)|x2+y2≤1},证明不等式
(I)设f(x),g(x)在(a,b)可微,g(x)≠0,存在常数C,使得f(x)=Cg(x)(x∈(a,b));
已知当x→0时f(x)=tanx一ln(1+sinx)与kxn是等价无穷小量,则
求凹曲线y=y(x),使得曲线上任一点处的曲率其中α为该曲线在相应点处的切线的倾角,且cosα>0,此外曲线在点(1,1)处的切线为水平直线.
曲线L的极坐标方程是r=θ,则L在点(r,θ)=(π/2,π/2)处的切线的直角坐标方程是__________.
(I)求在区间[0,+∞)上的最大值;(Ⅱ)证明当0≤x
(2000年试题,八)设函f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设z=f(x,y)满足≠0,由z=f(x,y)可解出y=y(z,x).求:(Ⅰ);(Ⅱ)y=y(z,x).
随机试题
湿疮仅有潮红、丘疹,无渗液时选用:渗液减少时选用:
中国居民企业股东能够提供资料证明其控制的外国企业满足()条件之一的,可免将外国企业不作分配或减少分配的利润视同股息分配额,计入中国居民企业股东的当期所得。
如图所示,圆O上一点C在直径AB上的射影为D,点D在半径OC上的射影为E.若AB=3AD,则的值为______.[img][/img]
丝线:编织:花边
森林是人类文明的摇篮,是最直接影响人类能否生存下去的生态因子。森林吸收二氧化碳,释放氧气,以此平衡着大气二氧化碳的比例,据估计,世界上的森林和植物每年产4000亿氧气。森林是造雨者,不但影响降水量,且减缓山坡上的土壤侵蚀。这段话主要支持了这样一种论
一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管,当打开5个进水管时需要5小时才能注满水池;当打开3个进水管时,需要10小时才能注满水池;现在需要在2小时内将水池注满,那么至少要打开多少个进水管?()
哲学家孔德认为:“人们必须认识到,人类进步能够改变的只是其速度,而不会出现任何发展顺序的颠倒或越过任何重要的阶段。”对他的这一看法,分析正确的有
GenerationsofAmericanshavebeenbrought【C1】______tobelievethatagoodbreakfastisimportantforhealth.Eatingbreakfasta
ThedefectsoftheBiblemaybecausedby______.
Whichofthefollowingisthemaincauseofglobalwarming?
最新回复
(
0
)