(Ⅰ)证明积分中值定理:设f(x)在[a,b]上连续,则存在ξ∈[a,b],使∫abf(x)dx=f(ξ)(b-a); (Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,证明至少存在一点ξ∈(1,3),使得φ’’(ζ)

admin2013-09-15  64

问题 (Ⅰ)证明积分中值定理:设f(x)在[a,b]上连续,则存在ξ∈[a,b],使∫abf(x)dx=f(ξ)(b-a);
  (Ⅱ)若φ(x)有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,证明至少存在一点ξ∈(1,3),使得φ’’(ζ)<0.

选项

答案(Ⅰ)设M和m分别是连续函数f(x)在区间[a,b](b>a)上的最大值和最小值,则有m(b-a)≤∫abf(x)≤M(b-a). 不等式两边同除以(b-a),得到[*] 显然[*] 是介于函数f(x)的最大值和最小值之间的, 根据闭区间上连续函数的介值定理可知,在区间[a,b]上至少存在一点ξ,使得函数f(x)在该点处的函数值和[*] 等式两边同乘以(b-a)可得[*] (Ⅱ)由积分中值定理可得,至少存在一点η∈(2,3),使得∫23φ(x)dx=φ(η). 又φ(2)>∫23φ(x)dx,所以有φ(2)>φ(1),φ(2)>φ(η)。 因为φ(x)有二阶导数,所以由拉格朗日微分中值定理可知,至少存在一点ξ1∈(1,2), 使得[*]且至少存在一点ξ1∈(2,η), 使得[*]再由拉格朗日微分中值定理可知, 至少存在一点ξ∈(ξ1,ξ2),使得[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/a5DRFFFM
0

最新回复(0)