首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,α3,β1,β2均为四维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=( )
α1,α2,α3,β1,β2均为四维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=( )
admin
2019-05-12
28
问题
α
1
,α
2
,α
3
,β
1
,β
2
均为四维列向量,A=(α
1
,α
2
,α
3
,β
1
),B=(α
3
,α
1
,α
2
,β
2
),且|A|=1,|B|=2,则|A+B|=( )
选项
A、9
B、6
C、3
D、1
答案
B
解析
由矩阵加法公式,得A+B=(α
1
+α
3
,α
2
+α
1
,α
3
+α
2
,β
1
+β
2
),结合行列式的性质有
|A+B|=|α
1
+α
3
,α
2
+α
1
,α
3
+α
2
,β
1
+β
2
|
=|2(α
1
+α
2
+α
3
),α
2
+α
1
,α
3
+α
2
,β
1
+β
2
|
=2|α
1
+α
2
+α
3
,α
2
+α
1
,α
3
+α
2
,β
1
+β
2
|
=2|α
1
+α
2
+α
3
,—α
3
,—α
1
,β
1
+β
2
|
=2|α
2
,—α
3
,—α
1
,β
1
+β
2
|
=2|α
1
,α
2
,α
3
,β
1
+β
2
|
=2(|A|+|B|)=6。
转载请注明原文地址:https://jikaoti.com/ti/ZdoRFFFM
0
考研数学一
相关试题推荐
[*]故n=3,c=-4/3.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
设空间曲线C由立体0≤x≤1,0≤y≤1,0≤z≤1的表面与平面x+y+z=3/2所截而成,计算|∮C(z2-y2)dx+(x2-z2)dy+(y2-x2)dz|.
设函数u(x,y),v(x,y)在D:x2+y2≤1上一阶连续可偏导,又f(x,y)=v(x,y)i+u(x,y)j,g(x,y)=()j,且在区域D的边界上有u(x,y)≡1,v(x,y)≡y,求f.gdσ.
设f(x)在区间[a,b]上满足a≤f(x)≤b,且|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数(un+1-un)绝对收敛.
设f(μ)连续可导,计算I=+zdxdy,其中曲面∑为由y=x2+z2+6与y=8一x2一z2所围成立体的外侧.
设(X1,X2,…,Xn,Xn-1,…,Xn-m)为来自总体X~N(0,σ2)的简单样本,则统计量U=服从_________分布.
二次型f(x1,x2,x3)=x12+ax22+x32一4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:常数a,b;
如图3一15所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是()
设a,b,c的模|a|=|b|=|c|=2,且满足a+b+c=0,则a.b+b.c+c.a=_________.
随机试题
颈椎病的病因中,外来因素包括
Hespentallhissparetime(in)learningEnglishinordertoadapttolifeabroadassoonaspossible.
虚证痛经的治法为()
洋地黄的禁忌证是
不易导致便秘或腹泻不良反应的抗酸药是()
网络托管业务属于基础电信业务。()
马洛斯认为,人具有七种基本需要,其中被称为缺失需要的有()。
—般破坏性地震是指几级以上的地震?()
给定资料1.随着新学年来临,J省S县为了让全县贫困学生读上书,不因家贫而辍学,教育精准扶贫大走访和家访,以及帮助贫困学生申请救助的步伐一刻也没停歇。当看到学费缺口一点点缩小时,准大学生叶珊珊脸上露出了久违的笑容。她来自戴家埔乡淋洋村一个
Musicproducesprofoundandlastingchangesinthebrain.Schoolsshouldaddmusicclasses,notcutthem.Nearly20yearsago,a
最新回复
(
0
)