首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一l,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一l,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2019-01-19
37
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一l,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为三阶单位矩阵。
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
,故 βα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=一2α
1
, 即α
1
是矩阵B的属于特征值-2的特征向量。 由关系式B=A
5
一4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=一2得B的三个特征值为μ
1
=一2,μ
2
=1,μ
3
=1。 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
1
,α
2
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0。 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 (1,一1,1)[*]=0, 得其基础解系为[*],故可取α
2
=[*] β的全部特征向量为k
1
[*],其中k
1
≠0,k
2
,k
3
不同时为零。
解析
转载请注明原文地址:https://jikaoti.com/ti/ZbBRFFFM
0
考研数学三
相关试题推荐
设曲线L位于χoy平面的第一象限内,L上任一点M处的切线与y轴总相交,交点记为A,已知,且L过点(),求L的方程为_______.
若向量组(Ⅰ):α1=(1,0,0)T,α2=(1,1,0)T,α3=(1,1,1)T可由向量组(Ⅱ):β1,β2,β3,β4线性表示,则(Ⅱ)的秩为_______.
求极限=_______.
设函数y=y(χ)由方程y-χey=1所确定,试求=_______和=_______.
设曲线L2:y=1一x2(0≤x≤1),x轴和y轴所围区域被曲线L2:y=kx2分成面积相等的两部分,其中常数k>0.(I)试求k的值;(Ⅱ)求(I)中k的值对应的曲线L2与曲线L1及x轴所围平面图形绕x轴旋转一周所得的旋转体的体积.
设随机变量X与Y相互独立,且均服从(一1,1)上的均匀分布.(1)试求X和Y的联合分布函数;(2)试求Z=X+Y的密度函数.
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A
随机试题
行为主义学派认为,人的异常行为、神经症的症状主要是通过什么得来的
氨基酰和tRNA结合形成
患者女,39岁,因晨起右手手指疼痛麻木半月就诊,活动手腕后症状可减轻。腕管综合征的诊断要点为
下列高分子材料中,不是肠溶衣的是
如图4-57所示质量为m、长为l的杆OA以ω的角速度绕轴O转动,则其动量为()。
背景:某一级资质装饰施工队承接了一大厦南面石材及北面玻璃幕墙的安装工作。在进行石材幕墙施工中,由于硅酮耐候密封胶库存不够,操作人员为了不延误工期即时采用了不同于硅酮结构胶的另一品牌,事后提供了强度实验报告,证明其性能指标满足了承载力的要求。九月份在北
组织部门接到举报,表示某国有企业单位负责人胡某在任职期间有违法行为,经过该地区财政、审计、统计方面组成的联合调查组的全面考察,发现:(1)该公司设置大小两套账,大账对外,小账对内。(2)两个月前,打击压制坚持原则的会计工作人员郑某,将其
广州太阳有限公司GuangzhouSunCo.,Ltd.是一家流通性外贸企业,2006年12月15日与德国DDDCo.,Ltd.签订一份订购合同如下: PURCHASECONTRACT
我国《进出口税则》的商品编码采用6位数编码,其中,第一、第二位数为章的编号,第三、第四位数为品目的编号,第五、第六位数为子目的编号。
A、Dead.B、Worse.C、Better.D、Unclear.C
最新回复
(
0
)