首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问: α4能否由α1,α2,α3线性表出,说明理由.
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问: α4能否由α1,α2,α3线性表出,说明理由.
admin
2021-07-27
56
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,-1,2,0]
T
.记α
j
=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.问:
α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由.
选项
答案
α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次线性方程组的基础解系只有一个非零解向量,故r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4-1=3,且由对应齐次线性方程组的通解知,α
1
-α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://jikaoti.com/ti/Z6lRFFFM
0
考研数学二
相关试题推荐
下列二次型中是正定二次型的是()
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
当A=()时,(0,1,-1)和(1,0,2)构成齐次方程组AX=0的基础解系.
设A为m×n矩阵,且r(A)=m,则()
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1—λ1)β1+…+(ks一λs)βs=0,则
设f(χ)在[a,b]上连续,证明:∫abf(χ)dχ=∫abf(a+b-χ)dχ.
设问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
在区间[-1,1]上的最大值为________.
设齐次线性方程组有非零解,且为正定矩阵,求a,并求出当|X|=时,XTAX的最大值。
随机试题
被称为“乐府双璧”的是《孔雀东南飞》和()
电缆按用途分为()。
可减轻慢性心力衰竭患者的心脏负荷治疗措施有()
泻下药宜
骨髓检查的禁忌证为
清热燥湿,泻火解毒,止血,安胎清热泻火,滋阴润燥
意外事件与过失犯罪的相似之处和最根本的区别。
阅读下面的游戏定点观察记录,分析活动情况,写出观察结论。案例:游戏的定点观察记录大一班的娃娃家区域里有锅、碗、杯子和勺子。一段时间以来,在这个游戏区域的活动一直比较平淡。这天,在大一班幼儿进行分组游戏时,欣欣和云云又跑到了娃娃家区域。欣
下列文学常识的表述不正确的一项是()
设f(x)=ex+x3∫01f(x)dx,则∫01f(x)dx=
最新回复
(
0
)