首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列二次型中是正定二次型的是( )
下列二次型中是正定二次型的是( )
admin
2019-08-12
38
问题
下列二次型中是正定二次型的是( )
选项
A、f
1
=(x
1
一x
2
)
2
+(x
2
一x
3
)
2
+(x
3
一x
1
)
2
。
B、f
2
=(x
1
+x
2
)
2
+(x
2
一x
3
)
2
+(x
3
+x
1
)
2
。
C、f
3
=(x
1
+x
2
)
2
+(x
2
+x
3
)
2
+(x
3
一x
4
)
2
+(x
4
一x
1
)
2
。
D、f
4
=(x
2
+x
2
)
2
+(x
2
+x
3
)
2
+(x
2
+x
4
)
2
+(x
4
一x
1
)
2
。
答案
D
解析
f=x
T
Ax正定→对任意的x≠0,均有x
T
Ax>0;反之,若存在x≠0,使得f=x
T
Ax≤0则f或A不正定。
A选项因f
1
(1,1,1)=0,故不正定。
B选项因f
2
(一1,1,1)=0,故不正定。
C选项因f
3
(1,一1,1,1)=0,故不正定。由排除法,故选D。
转载请注明原文地址:https://jikaoti.com/ti/5PERFFFM
0
考研数学二
相关试题推荐
(07年)设函数则y(n)(0)=________.
(13年)设函数y=f(x)由方程cos(xy)+lny—x=1确定,则
(01年)设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex-f(x).且f(0)=一0,g(0)=2,求
(95年)如图2.2所示,设曲线L的方程为y=f(x),且y">0,又MT、MP分别为该曲线在点M(x0,y0)处的切线和法线.已知线段MP的长度为(其中y’0=y’(x0),y0"=y"(x0)),试推导出点P(ξ,η)的坐标表达式.
(2001年)已知矩阵且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是3阶单位阵,求X.
(2013年)设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3).则|A|=________.
(2014年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+kα3线性无关是向量组α1,α2,α3线性无关的
设实对称矩阵A满足A2-3A+2E=O,证明:A为正定矩阵.
已知二次型f(x1,x2,x3)=x12-2x22+bx32-4x1x2+4x1x3+2ax2x3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32.求a、b的值和正交矩阵P.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设,P点的坐标为求点P关于L的对称点Q的坐
随机试题
民主革命时期,中国共产党党员的绝大多数来自农民,因而它不是工人阶级先锋队。
A.面部烧伤B.双上肢烧伤C.会阴部烧伤D.双下肢烧伤E.躯干部烧伤烧伤面积为18%的是
关于牙周炎致病菌菌膜上所含脂多糖描述哪项是错误的
()是定期向巷道周边撤布惰性岩粉,用它覆盖沉积在巷道周边的沉积煤尘。
以下契约方中,()拥有在未来某一特定时间内按双方约定的价格,购进或卖出一定数量的某种金融资产的义务。
根据公司法律制度的规定,有限责任公司董事、高级管理人员执行公司职务时因违法给公司造成损失的,在一定情形下,股东可以为了公司利益,以自己的名义直接向人民法院提起诉讼。下列各项中,属于该情形的有()。
私有制社会不平等现象的主要表现形式是()。
文学艺术总应该是生活现实的反映,而不能只是作者的自我表现。但文学艺术的反映,不同于其他形式的反映,它必须是具体的,形象的反映。不使自己化为张三李四,不感受体验着张三李四的思想感情,就写不出张三李四来;不使自己融入客观现实之中,不呼吸着客观现实的气息,不感受
在数据库系统运行过程中,并发事务可能导致死锁。下面是一些实现事务的做法:Ⅰ.按相同顺序访问资源Ⅱ.减少事务中的用户交互Ⅲ.合并多个小事务Ⅳ.尽量使用表级锁Ⅴ.使用绑定连接在以上做法中,能有效减少数据库死锁发生数量的是()。
Theimportantchangeinwomen’slife-patternhasonlyrecentlybeguntohaveitsfulleffectonwomen’s【T1】______position.Even
最新回复
(
0
)