设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;

admin2015-07-22  36

问题 设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2
求矩阵A的特征值;

选项

答案因为α1,α2,α3线性无关,所以α1+α2+α3≠0, 由A(α1+α2+α3)=2(α1+α2+α3),得A的一个特征值为λ1=2; 又由A(α1一α2)=一(α1一α2),A(α2-α3)=一(α2-α3),得A的另一个特征值为λ2=一1.因为α1,α2,α3线性无关,所以α1一α2与α2一α3也线性无关,所以λ2=一1为矩阵A的二重特征值,即A的特征值为2,一1,一1.

解析
转载请注明原文地址:https://jikaoti.com/ti/YrPRFFFM
0

最新回复(0)