首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵问当k为何值时,存在可逆矩阵P,使得P一1AP为对角矩阵?并求出P和相应的对角矩阵.
设矩阵问当k为何值时,存在可逆矩阵P,使得P一1AP为对角矩阵?并求出P和相应的对角矩阵.
admin
2021-11-09
30
问题
设矩阵
问当k为何值时,存在可逆矩阵P,使得P
一1
AP为对角矩阵?并求出P和相应的对角矩阵.
选项
答案
(1)由|λE一A|=0,求A的全部特征值. [*]得A的特征值为λ
1
=λ
2
=一1,λ
3
=1. (2)由(λE一A)x=0,求A的特征向量. 对于λ
1
=λ
2
=一1,解线性方程组(-E-A)x=0,有[*] 要使矩阵A相似于对角矩阵,则对应于λ
1
=λ
2
=一1,必有两个线性无关的特征向量,所以r(-E-A)=3—2=1,从而有k=0. 于是当k=0时,有[*] 得对应的两个线性无关的特征向量为ξ
1
=(一1,2,0)
T
,ξ
2
=(1,0,2)
T
. 对于λ
3
=1,解线性方程组(E-A)x=0,有[*] 得对应的线性无关的特征向量为ξ
3
=(1,0,1)
T
.因此,当k=0时,存在可逆矩阵[*]
解析
本题主要考查矩阵可相似对角化的问题,行列式的计算及特征值、特征向量的计算.先求出矩阵A的特征值,只有当矩阵A有3个线性无关的特征向量时,A才相似于对角矩阵,即存在可逆矩阵P,使得P
一1
AP为对角矩阵,其中P是以A的3个线性无关的特征向量构成的矩阵.
转载请注明原文地址:https://jikaoti.com/ti/IQlRFFFM
0
考研数学二
相关试题推荐
设f(χ)在(-1,+∞)内连续且f(χ)-tf(t)dt=1(χ>-1),求f(χ).
设0<a<1,证明:方程arctanχ=aχ在(0,+∞)内有且仅有一个实根.
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f′(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得ηf′(η)+f(η)=0.
设3维列向量组α1,α2,α3线性无关,γ1=α1+α2-α3,γ2=3α1-α2,γ3=4α1-α3,γ4=2α1—2α2+α3,则向量组γ1,γ2,γ3,γ4的秩为().
设A为3阶方阵,如果A-1的特征值是1,2,3,则|A|的代数余子式A11+A22+A33=.
已知,求a,b的值。
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任一点。写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式。
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化。
设y(x)是微分方程y’’+(x-1)y’+x2y=ex满足初始条件y(0)=0,y’(0)=1的解,则().
当x→1时,函数的极限()
随机试题
首创方论的医学家是
必须摄取包括横膈立位腹平片的是
A.进行性贫血B.皮肤、鼻腔等处发生坏死性溃疡C.皮肤、黏膜出血D.频繁性呕吐E.胸骨压痛血小板减少可出现的临床表现是()
青岛某公司为开拓业务,在北京设立一家办事处。一天,办事处负责人王某在出外因公办事时驾车不慎致人损害,须赔偿5万元,则该5万元应:()
产品的生产成本包括为生产该种产品而发生的直接人工费、直接材料费、制造费用以及销售费用。()
公安机关作为党的忠实工具,必须认真实践全心全意为人民服务的宗旨,要求()
一、注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的测试。2.作答参考时限:阅读材料40分钟,作答110分钟。3.仔细阅读给定材料,按照后面提出的“申论要求”依次作答。二、给定资料
下列关于抵押财产的说法,正确的有
在并行数据库中,最适合整表扫描操作的数据划分方法是【6】。
以下叙述中错误的是
最新回复
(
0
)