首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1). (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,
设4元线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1). (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,
admin
2019-04-22
42
问题
设4元线性方程组(Ⅰ)为
,又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(-1,2,2,1).
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
选项
答案
(1)由系数矩阵的初等行变换:[*] 令χ
3
=1,χ
4
=0,得ξ
1
=(0,0,1,0)
T
;令χ
3
=0,χ
4
=1,得ξ
2
=(-1,1,0,1)
T
,则ξ
1
,ξ
2
就是(Ⅰ)的一个基础解系. (2)若χ是(Ⅰ)和(Ⅱ)的公共解,则存在常数λ
1
,λ
2
,λ
3
,λ
4
,使 [*] 由此得λ
1
,λ
2
,λ
3
,λ
4
满足齐次线性方程组 [*] 解此齐次线性方程组,得其参数形式的通解为 λ
1
=C,λ
2
=C,λ
3
=C,λ
4
=C,其中C:为任意常数.故(Ⅰ)和(Ⅱ)有非零公共解,全部非零公共解为 C(0,0,1,0)
T
+C(-1,1,0,1)
T
=C(-1,1,1,1)
T
,其中C为任意非零常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/XzLRFFFM
0
考研数学二
相关试题推荐
设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫02f(t)dt是()
已知A=r(A*)=1,则
已知函数f(x,y)在点(0,0)的某个邻域内连续,且=1,则
设f(χ)在[a,b]上连续,证明:∫abf(χ)dχ∫χbf(y)dy=[∫abf(χ)dχ]2.
求不定积分
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
求极限ln(1+χt)dt.
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。求A的全部特征值;
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0’试证明存在ξ∈(a,b)使=0.
求解y"=e2y+ey,且y(0)=0,y’(0)=2.
随机试题
监理单位在接受业主的委托后,必须与业主签订建设监理委托合同,才能对工程项目进行监理。()
下列属于施工现场临时用电管理措施的有()。
气血两虚证与气不摄血证均可见的表现是
下列关于施工顺序的说法,错误的是()。
下列不属于企业对项目经理考核内容的是()。
幼儿想象的形象之间常常毫无联系。例如,幼儿绘画常常是画了“小船”,又画“气球”;画了一把“牙刷”,又画了一朵“小花”——这表明幼儿想象的一个特点是()。
某种物品或服务的目前需求水平和时间等于预期的需求水平和时间的一种需求状况是指()。
下列对计算机的分类中,不正确的是()。
Chinahasahugevarietyofdifferentdialects,butduetothecommonuseofstandardMandarininschoolsandgeneralpublicpla
Whywork?【C1】______youhaveperiodicallyaskedyourselfthesamequestion,perhapsfocusedon【C2】______youhavetowork.Serf-
最新回复
(
0
)