首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(Ⅰ)为 又已知某齐次线性方程组(Ⅱ)的通解为 k1[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共
设四元齐次线性方程组(Ⅰ)为 又已知某齐次线性方程组(Ⅱ)的通解为 k1[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共
admin
2018-09-25
23
问题
设四元齐次线性方程组(Ⅰ)为
又已知某齐次线性方程组(Ⅱ)的通解为
k
1
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
.
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)线性方程组(Ⅰ)的解为 [*] 得所求基础解系 ξ
1
=[0,0,1,0]
T
,ξ
2
=[-1,1,0,1]
T
. (2)将方程组(Ⅱ)的通解代入方程组(Ⅰ),得 [*] =>k
1
=-k
2
.方程组(Ⅰ)和(Ⅱ)有 非零公共解,且为 x=-k
2
[0,1,1,0]
T
+k
2
[-1,2,2,1]
T
=k
2
[-1,1,1,1]
T
=k[-1,1,1,1]
T
,其中k为任意非零常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/Xu2RFFFM
0
考研数学一
相关试题推荐
设D是由曲线=1(a>0,b>0)与x轴,y轴围成的区域,求I=ydxdy.
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A-B2是对称矩阵.
设f(x)在[-2,2]上有连续的导数,且f(0)=0,F(x)=f(x+t)dt,证明级数绝对收敛.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
已知f(x)=,证明f′(x)=0有小于1的正根.
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f′(0)=0,且-1)f″(x)-xf′(x)=ex-1,则下列说法正确的是
求齐次方程组的基础解系.
已知方程组总有解,则λ应满足__________.
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
已知齐次线性方程组同解,求a,b,c的值.
随机试题
MR功能成像技术包括________、________和________。
(2010年4月)中国对外国法人在中国设立常驻代表机构,采取的是_____。
乙胺嘧啶:
男婴,4个月,冬季出生,因夜惊多汗,烦躁易哭1个月来院门诊,生后母乳喂养,未加辅食。体检:精神尚可,枕秃,枕骨按之有乒乓球感。在此患儿可能的致,病原因中,以下哪项不正确
依据《工程建设项目招标范围和规模标准规定》的规定,各类工程项目的建设活动,达到下列标准之一者,必须进行招标,此标准为()
非指导性教学法
心理学家提出“一万小时定律”,认为天才不过是做了足够多练习的人。莫扎特6岁开始作曲.但直到21岁才写出堪称伟大的作品,这时他已经写了10年,超过1万小时。下列选项与“一万小时定律”蕴含相同哲理的是()。
凡事都有度,对于适当的超前,还是有必要的。但是现在的幼师,甚至校长都可能对幼儿教育一窍不通,把幼儿教育商业化,这难免违背了教育幼儿的初衷。他们的教育完全是迎合一些“望子成龙”的家长的需求。所以,在这件事情上,幼儿园负有部分责任,而家长也起着推波助澜的作用。
Java语言中属于跳转语句的是
WhenIwasalittlegirl,everytimemydadwasrepairingsomething,he【K1】______askmetoholdthehammer,andmeanwhile,have
最新回复
(
0
)