首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
admin
2016-10-26
25
问题
已知η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
选项
A、η
1
+η
2
,η
2
+η
3
,η
3
+η
4
,η
4
+η
1
.
B、η
1
,η
2
,η
3
+η
4
,η
3
一η
4
.
C、η
1
,η
2
,η
3
,η
4
的一个等价向量组.
D、η
1
,η
2
,η
3
,η
4
的一个等秩的向量组.
答案
B
解析
向量组(A)线性相关,(A)不正确.
η
1
,η
2
,η
3
,η
4
,η
1
+η
2
与η
1
,η
2
,η
3
,η
4
等价.但前者线性相关,故(C)不正确.等秩的向量组不一定能互相线性表出,因而可能不是方程组的解,故(D)不正确.选(B).
转载请注明原文地址:https://jikaoti.com/ti/kmwRFFFM
0
考研数学一
相关试题推荐
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
判断下列反常积分的敛散性
设y=ex,求dy和d2y:(1)x为自变量;(2)x=x(t),t为自变量,x(t)二阶可导.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设n阶矩阵A的元素全为1,则A的n个特征值是________.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
求不定积分
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放入这十个空盒中,设每个球放入任何一个盒子的可能性都是一样的,并且每个空盒可以放五个以上的球,计算下列事件的概率:C=“某个指定的盒子不空”.
随机试题
韩愈提出“文以明道”的观念是在哪篇文章中【】
以下哪种类型是类风湿关节炎的类型之一
各类模板拆除的顺序和方法,应根据模板设计的规定进行。一般现浇楼盖及框架结构的拆模顺序是()
5,8,13,21,34,()
个体生长过程有两个高峰,其第二高峰是()。
根据以下资料,回答111-115题2003-2007年,甲国平均每年比乙国少排放的碳总量为:
根据下列资料,回答下列问题。表中空出的两个数值之和为:
已知向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明:向量组α1,α2,α3,α5一α4的秩为4。
已知两曲线y=f(x)与在点(0,0)处的切线相同,写出此切线方程,并求极限.
在电子商务应用中,下面哪一种说法是错误的()。
最新回复
(
0
)