首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(α1,α2,α3,α4),方程组Aχ=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c任意. 记B=(α3,α2,α1,β-α4).求方程组Bχ=α1-α2的通解.
设4阶矩阵A=(α1,α2,α3,α4),方程组Aχ=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c任意. 记B=(α3,α2,α1,β-α4).求方程组Bχ=α1-α2的通解.
admin
2016-07-20
33
问题
设4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),方程组Aχ=β的通解为(1,2,2,1)
T
+c(1,-2,4,0)
T
,c任意.
记B=(α
3
,α
2
,α
1
,β-α
4
).求方程组Bχ=α
1
-α
2
的通解.
选项
答案
首先从AX=β的通解为(1,2,2,1)
T
+c(1,-2,4,0)
T
可得到下列信息: ①Aχ=0的基础解系包含1个解,即4-r(A)=1,得,r(A)=3.即r(α
1
,α
2
,α
3
,α
4
)=3. ②(1,2,2,1)
T
是Aχ=β解,即α
1
+2α
2
+2α
3
+α
4
=β. ③(1,-2,4,0)
T
是Aχ=0解,即α
1
-2α
2
+4α
3
=0.α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)=2. 显然B(0,-1,1,0)
T
=α
1
-α
2
,即(0,-1,1,0)
T
是Bχ=α
1
-α
2
的一个解. 由②,B=(α
3
,α
2
,α
1
,β-α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),于是 r(B)=r(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)=r(α
1
,α
2
,α
3
)=2. 则Bχ=0的基础解系包含解的个数为4-r(B)=2个.α
1
-2α
2
+4α
3
=0说明(4,-2,1,0)
T
是Bχ=0的解;又从B=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)容易得到B(-2,-2,-1,1)
T
=0,说明(-2,-2,-1,1)
T
也是Bχ=0的解.于是(4,-2,1,0)
T
和(-2,-2,-1,1)
T
构成Bχ=0的基础解系. Bχ=α
1
-α
2
的通解为: (0,-1,1,0)
T
+c
1
(4,-2,1,0)
T
+c
2
(-2,-2,-1,1)
T
,c
1
,c
2
任意.
解析
转载请注明原文地址:https://jikaoti.com/ti/XoPRFFFM
0
考研数学一
相关试题推荐
设f(x)有连续导数,f(x)>0,且对任意x,h,满足f(x+h)=∫xx+hdt+f(x),f(1)=求f(x)
设u=u(x,y,z)是由方程ex+u-xy-yz-zu=0确定的可微函数,求du的值.
利用换元法计算下列二重积分:设f(t)为连续函数,证明:f(x+y)dxdy=∫-11f(t)dt,D:|x|+|y|≤1.
二次积分∫02dx∫x2dy的值等于().
设f(x)=|x|+sinx(-π≤x≤π)的傅里叶展开为(ancosnx+bnsinnx),则其中的系数a3为().
设f(x)=x3一3x+k只有一个零点,则k的取值范围是().
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
已知函数u(x,y)满足,求a,b的值,使得在变换u(x,y)=v(x,y)eax+by之下,上述等式可化为函数v(x,y)的不含一阶偏导数的等式.
设函数y=y(x)由参数方程确定,则2|t=0=________.
一根长度为1的细棒位于x轴的区间[0,1]上,若其线密度ρ(x)=-x2+2x+1,则该细棒的质心横坐标=________.
随机试题
香菇的菇柄越长,质量越好。()
疑为机械性肠梗阻的病例,当腹部平片显示下列哪项时应考虑绞窄性肠梗阻的可能
A.浙江、江西、福建B.广西、云南、广东C.俄罗斯、新疆北部D.黑龙江、吉林、内蒙、新疆、青海E.吉林花鹿茸的主产地是
下列各项中,属于有限责任公司董事会行使的职权是()。
某小型企业拟新建检修车间、办公附属房屋和10/0.4kV车间变电所各一处。变电所设变压器一台,车间的用电负荷及有关参数见下表。请回答下列问题。当采用需要系数法计算负荷时,吊车的设备功率与下列哪个数值最接近?()
固定总价合同适用于( )。
为了大力发展科学技术,党的十八大以后,以习近平为总书记的党中央提出了
windows95是真正的( )位操作系统。A.8B.16C.32D.64
20
LookontheBrightSideDoyoueverwishyouweremoreoptimistic,someonewhoalways【C1】______tobesuccessful?Havingsome
最新回复
(
0
)