首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2018-05-22
29
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. 令 [*] 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
2
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n
,a
n
),使得φ’(ξ
1
(1)
)=φ’(ξ
2
)=…=φ’(ξ
n
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 f(c)=[*]f
(n)
(ξ)
解析
转载请注明原文地址:https://jikaoti.com/ti/X9dRFFFM
0
考研数学二
相关试题推荐
(2006年试题,二)设f(x,y)为连续函数,则等于().
(2000年试题,二)设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x)一f(x)g’(x)
(2005年试题,二)设F(x)是连续函数f(x)的一个原函数,“”表示“M的充分必要条件是N”,则必有()。
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点.记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.
从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用,设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是对应的齐次方程的解,则
就k的不同取值情况,确定方程在开区间内根的个数,并证明你的结论.
计算二重积分,其中D={(X,y)10≤X≤1,0≤y≤1}.
函数在[一π,π]上的第一类间断点是x=()
设f(χ)分别满足f(χ)在χ=0邻域二阶可导,f′(0)=0,且(-1)f〞(χ)-χf′(χ)=eχ-1,则下列说法正确的是
随机试题
病人,女性,20岁,诊断支气管扩张5年,常反复咳血,本次因大量咳血而急诊入院,经抢救后咳血已止,应继续采取下列哪些护理措施( )。
下列叙述中正确的是()。
下列财政政策工具中,具有内在稳定器功能的是()。[2012、2011、2010、2005年真题]
物业管理服务有别于业主与专业公司之间的专项服务委托,说明物业管理服务具有()的特点。
提高职业道德修养的方法有()。
按照信息系统安全策略“七定”要求,系统安全策略首先需要()。
在多道程序系统中,为了保证公共变量的完整性,各进程应互斥进入相关临界区。所谓临界区,是指(21)。多道程序的引入主要是为了(22)。操作系统采用SPOOLing技术提高了(23)的利用率。在操作系统中,(24)是以时间换取空间的技术。系统出现死锁的原因是(
向项目中添加表单,应该使用项目管理器的
RecentlytheBarbicanmuseuminLondonheldanexhibitioncalledtheRainRoom.Duringthetimethisexhibitionwasopen,myTwi
Wordonthestreetisthatgossipistheworst.AnAnnLandersadvicecolumnoncecharacterizedgossipas"thefacelessdemonth
最新回复
(
0
)