首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
admin
2020-03-16
41
问题
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为
,求f(x)的表达式。
选项
答案
由题意得 S
OCMA
=[*][1+f(x)],S
CBM
=∫
x
1
f(t)dt, 所以[*] 两边对x求导 [*] 即有 1+f(x)+xf’(x)一2f(x)=x
2
。 当x≠0时,化简得[*],即 [*] 此方程为标准的一阶线性非齐次微分方程,其通解为 [*] =x
2
+1+Cx。 曲线过点B(1,0),代入上式,得C=一2。所以 f(x)=x
2
+1—2x=(x一1)
2
。
解析
转载请注明原文地址:https://jikaoti.com/ti/WstRFFFM
0
考研数学二
相关试题推荐
设A为n阶方阵,任何n维列向量都是方程组的解向量,则R(A)=________。
[2007年]设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b)使得f″(ξ)=g″(ξ).
[2015年]函数f(x)=在(一∞,+∞)内().
[2003年]设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y'≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程+(y+sinx)=0变换为y=y(x)满足的微分方程.
[20l5年]已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
[2010年]设m,n均是正整数,则反常积分dx的收敛性().
设函数y=y(x)由参数方程确定,其中x(t)是初值问题的解.求。
设。已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
[2006年]设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解.(1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
随机试题
位于大脑额叶的语言中枢是______和______。
七情致病的一般规律不包括哪项
患者,女,32岁。胸胁、乳房胀痛,闷闷不乐,经来腹部刺痛,经色紫黯,量少,夹有血块,舌质紫暗,脉弦涩。其证候是
A、平舌骨大角尖B、平舌骨大角稍下方C、平甲状软骨上缘D、平舌骨大角稍上方E、平下颌骨髁突颈部舌动脉自何处由颈外动脉发出
根据《反不正当竞争法》,下列各项不属于经营者的是( )。
根据《税务行政复议规则》,下列事项中,不可以适用调解的是()。
A、 B、 C、 D、 C
Twoandahalfmonths______tooKong,Ithink.
Theydon’thaveanyideaabout________theyhavetodoalltheworksbythemselves.
A、Thecityistoocrowded.B、Thecityisanattractiveplace.C、Thestreetsaretoonarrow.D、Thestudentsthereleadacomforta
最新回复
(
0
)