首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y'≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程+(y+sinx)=0变换为y=y(x)满足的微分方程.
[2003年] 设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y'≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程+(y+sinx)=0变换为y=y(x)满足的微分方程.
admin
2019-04-05
73
问题
[2003年] 设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y'≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程
+(y+sinx)
=0变换为y=y(x)满足的微分方程.
选项
答案
由[*].推出[*],然后代入原方程化简求解. 由反函数导数公式知[*],即y'[*]=1.在方程两端对x求导,得 [*] 所以[*],代入原微分方程,得y"-y=sinx. ①
解析
转载请注明原文地址:https://jikaoti.com/ti/2ILRFFFM
0
考研数学二
相关试题推荐
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2),常数λ>0.
求曲线y=的一条切线l,使该曲线与切线l及直线x=0,x=2所围成图形的面积最小.
求极限:.
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=______.
(2012年)设函数f(x,y)可微.且对任意x,y都有,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是
(2012年试题,二)设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|__________.
[2009年](I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)一f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f′(x)=
[2012年](Ⅰ)证明方程xn+xn-1+…+x=l(n>1的整数),在区间(1/2,1)内有且仅有一个实根;(Ⅱ)记(I)中的实根为xn,证明xn存在,并求此极限.
[2012年]曲线y=的渐近线条数为().
[2011年]设A=[α1,α2,α3,α4]是四阶矩阵,A*为A的伴随矩阵,若[1,0,1,0]T是方程组AX=0的一个基础解系,则A*X=0的基础解系可为().
随机试题
该病最可能的诊断哪项化验有助于血中内毒素的检测
患者,女,45岁。失眠易醒,身热出汗,眩晕耳鸣,手足心热,烦躁不安。治疗首选更年安片。更年安片的药物组成中不含有的是()
A.聋哑儿B.牙齿黑染C.佝偻病D.骨骼脱钙和生长障碍E.促使骨骼和骨干过早闭合(药物对小儿生长发育的影响)应用氨基糖苷类抗生素
小型数据通信及计算机网络工程的投资额为()。
对我国名山的描述正确的是()。
请简要介绍一下你父母的工作情况。
A、 B、 C、 D、 C
以下各项中,不属于软件测试任务的是
CouldthemanrepairtheTVtoday?
Thespeakerisa______now.
最新回复
(
0
)