首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量α不是二阶方阵A的特征向量. (1)证明:α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设二维非零向量α不是二阶方阵A的特征向量. (1)证明:α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
admin
2022-04-07
73
问题
设二维非零向量α不是二阶方阵A的特征向量.
(1)证明:α,Aα线性无关;
(2)若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化;
选项
答案
(1)若α,Aα线性相关,则存在不全为零的数k
1
,k
2
,使得k
1
α+k
2
Aα=0,显然k
2
≠0,所以Aα=-(k
1
/k
2
),与已知矛盾,所以α,Aα线性无关. (2)由A
2
α+Aα-6α=0.得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即 |3E+A|·|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0,得 (2E-A)α=0,即Aα=2α,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)α=0,得 (3E+A)α=0,即Aa=-3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/WqfRFFFM
0
考研数学三
相关试题推荐
[*]
[*]
A、 B、 C、 D、 A
设随机变量X的绝对值不大于1,且P|X=0}=,已知当X≠0时,X在其他取值范围内服从均匀分布,求X的分布函数F(x).
求不定积分
一个班共有30名同学,其中有6名女生,假设他们到校先后次序的所有模式都有同样的可能性.求班上李明和王菲两位同学中,李明比王菲先到校的概率
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xfˊ(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
向量组β1,β2,…,βt可由向量组α1,α2,…,αs线性表出,设表出关系为[β1,β2,…,βt]=[α1,α2,…,αs][α1,α2,…,αs]C若α1,α2,…,αs线性无关.证明:r(β1,β2,…,βt)=r(C).
设二维离散型随机变量只取(一1,一1),(一1,0),(1,一1),(1,1)四个值,其相应概率分别为.(I)求(X,Y)的联合概率分布;(Ⅱ)求关于X与关于Y的边缘概率分布;(Ⅲ)求在Y=1条件下关于X的条件分布与在X=1条件下关于Y的条件分布.
设平面区域D={(x,y)|x2+y2≤1,x+y≥0)求二重积分.
随机试题
护士在对哮喘性支气管炎所采取的护理措施当中,不妥当的是
下列胸部后前位评价点的组合,错误的是
A.人参B.半夏C.干姜D.黄芩、黄连E.大枣、甘草
桩基础的作用是()。
下列纳税人,适用核定征收企业所得税的是()。
行政执行过程中最具有实质意义、最为关键的阶段是:
【F1】Thisissupposedtobeanenlightenedage,butyouwouldn’tthinksoifonlyyoucouldhearwhattheaveragemanthinksoft
请根据下图所示网络结构回答下列问题。请按照图中RE的SO端口标识方式(S0:202.13.47.249/30),写出RG两个端口A、B对应的标识。
Peoplecanbeaddictedtodifferentthings-alcohol,drugs,eventelevision.Peoplewhohavesuchanaddictionare(21)which
Forthispart,youareallowed30minutestowriteashortessayonthefollowingquestion.Youshouldwriteatleast120words
最新回复
(
0
)