首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(u,v)具有连续偏导数,且f’u(u,v)+f’v(u,v)=sin(u+v)eu+v,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
设f(u,v)具有连续偏导数,且f’u(u,v)+f’v(u,v)=sin(u+v)eu+v,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
admin
2020-03-16
33
问题
设f(u,v)具有连续偏导数,且f’
u
(u,v)+f’
v
(u,v)=sin(u+v)e
u+v
,求y(x)=e
—2x
f(x,x)所满足的一阶微分方程,并求其通解。
选项
答案
由y(x)=e
—2x
f(x,x),有 y’(x)=一2e
—2x
f(x,x)+e
—2x
[f’
1
(x,x)+f’
2
(x,x)], 由f’
u
(u,v)+f’
v
(u,v)=sin(u+v)e
u+v
可得 f’
1
(x,x)+f’
2
(x,x)=(sin2x)e
2x
。 于是y(x)满足一阶线性微分方程 y’(x)+2y(x)=sin2x, 通解为 y(x)=e
—2x
(∫sin2x·e
2x
dx+C), 由分部积分公式,可得 ∫sin2x·e
2x
dx=[*](sin2x一cos2x)e
2x
, 所以 y(x)=[*](sin2x一cos2x)+C
—2x
。
解析
转载请注明原文地址:https://jikaoti.com/ti/WYtRFFFM
0
考研数学二
相关试题推荐
[2008年]如图1.3.2.1所示,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf′(x)dx等于().
[2016年]已知函数f(x)=则f(x)的一个原函数是().
[20l8年]将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
[2010年]求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.
[2016年]已知函数z=z(x,y)由方程(x2+y2)z+lnz+2(x+y+1)=0确定.求z=z(x,y)的极值.
[2009年]设z=f(x+y,x—y,xy),其中f具有二阶连续偏导数,求dz与.
[2015年]若函数z=z(x,y)由方程ex+2y+3z+xyz=1确定,则dz∣(0,0)=________.
设n是正整数,记Sn为y=e—xsinx(0≤x≤nπ)与x轴所围图形的面积,求Sn,并求
计算下列积分(其中a为常数):
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续;②f(x)在[a,b]上可积;③f(x)在[a,b]上可导;④f(x)在[a,b]上存在原函数.以PQ表示由性质P可推出性质Q,则有()
随机试题
元帝后宫既多,不得常见,乃使画工图形,案图召幸之。诸宫人皆赂画工,多者十万,少者亦不减五万。独王嫱不肯,遂不得见。后匈奴入朝,求美人为阏氏。于是上案图,以昭君行。及去,召见,貌为后宫第一,善应对,举止闲雅。帝悔之,而名籍已定。帝重信于外国,故不复更人。乃穷
石膏、知母均能治疗的病证是
当对某种疾病或人群健康状况不明时,首先采取的研究为
红外测温仪器的核心是()。
“应收账款”账户的期初借方余额为8000元,本期贷方发生额为6000元,本期借方发生额为10000元,则期末余额为()。
【2011年江苏省第27题】甲商品8折后的价格是乙商品原价的4倍,小王分别以8折和7折的价格买下了甲、乙两种商品,支出总额比甲商品原价少6元,问乙商品的实际销售价格是多少元?
Polarbearsaresufferingina【C1】________(warm)worldthaneverbefore.Polarbearsliveinenvironmentstoocoldformosta
WhenIwasin7thgrade,Ihadalotoftroubleinreading.Mymotherusedtositbymyside,andexplaineachparagraphofeach
Thetermmotionpictureindustryusuallyreferstothetheatricalmotionpictureindustry,whichiscalledthisbecauseitprodu
Womenarehalfthepopulationbutonly15%ofboardmembersatbigAmericanfirms,and10%inEurope.Companiesthatfishinonl
最新回复
(
0
)