首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是3阶矩阵,有特征值λ1一λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,λ3=一2对应的特征向量是ξ3. (Ⅰ)问ξ1+ξ2是否是A的特征向量?说明理由; (Ⅱ)ξ2+ξ3是否是A的特征向量?说明理由; (Ⅲ)证明:任意三维非零向量β(β≠0)都是A
A是3阶矩阵,有特征值λ1一λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,λ3=一2对应的特征向量是ξ3. (Ⅰ)问ξ1+ξ2是否是A的特征向量?说明理由; (Ⅱ)ξ2+ξ3是否是A的特征向量?说明理由; (Ⅲ)证明:任意三维非零向量β(β≠0)都是A
admin
2019-07-01
30
问题
A是3阶矩阵,有特征值λ
1
一λ
2
=2,对应两个线性无关的特征向量为ξ
1
,ξ
2
,λ
3
=一2对应的特征向量是ξ
3
.
(Ⅰ)问ξ
1
+ξ
2
是否是A的特征向量?说明理由;
(Ⅱ)ξ
2
+ξ
3
是否是A的特征向量?说明理由;
(Ⅲ)证明:任意三维非零向量β(β≠0)都是A
2
的特征向量,并求对应的特征值.
选项
答案
(Ⅰ)ξ
1
+ξ
2
仍是A的对应于λ
1
=λ
2
=2的特征向量. 因已知Aξ
1
=2ξ
1
,Aξ
2
=2ξ
2
,故 A(ξ
1
+ξ
2
)=Aξ
1
+Aξ
2
=2ξ
1
+2ξ
2
=2(ξ
1
+ξ
2
). (Ⅱ)ξ
2
+ξ
3
不是A的特征向量.假设是,设其对应的特征值为u,则有 A(ξ
2
+ξ
3
)=μ(ξ
2
+ξ
3
), 得2ξ
2
-2ξ
3
一μξ
2
一μξ
3
=(2-μ)ξ
2
一(2+μ)ξ
3
=0, 因2-μ和2+μ不同时为零,故ξ
2
,ξ
3
线性相关,这和不同特征值对应的特征向量线性无关矛盾, 故ξ
2
+ξ
3
不是A的特征向量. (Ⅲ)因A有特征值λ
1
=λ
2
=2,λ
3
=-2,故A
2
有特征值μ
1
=μ
2
=μ
3
=4.对应的特征向量仍是ξ
1
, ξ
2
,ξ
3
,且ξ
1
,ξ
2
,ξ
3
线性无关.故存在可逆矩阵P=(ξ
1
,ξ
2
,ξ
3
),使得 P
-1
A
2
P=4E,A
2
=P(4E)P
-1
=4E. 从而对任意的β≠0,有A
2
β=4Eβ=4β,故知任意非零向量β都是A
2
的对应于λ=4的特征向量.
解析
转载请注明原文地址:https://jikaoti.com/ti/VNQRFFFM
0
考研数学一
相关试题推荐
设幂级数在x=3条件收敛,则该幂级数收敛半径为___________.
[*]
设则
设函数f(x)连续,则
对随机变量X,已知EekX.存在(k>0常数),证明:P{X≥ε}≤.E(ekX).(其中ε>0).
证明:(1)若随机变量X只取一个值a,则X与任一随机变量Y独立;(2)符随机变量X与自己独立.则必有常数C,使得P(X=c)=1.
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P≥Q”表示可由
设A是主对角元素为0的4阶实对称矩阵,E是4阶单位矩阵,且E+AB是不可逆的对称矩阵,求A.
求适合下列微分关系式的一个原函数f(x):
随机试题
(2022年临沂)科学课上,教师通过做水的加温和降温的实验,让学生观察水的“三态变化”,这种教育方法是()
简述销售收入的概念及影响其实现的因素。
清蛋白的生理功能不包括
混合痔是指()。
患者,女性,43岁。突发右下腹剧痛伴恶心3h。体格检查:腹软,右下腹部深压痛,反跳痛(一),右侧脊肋角叩痛。尿常规:白细胞少许,红细胞(+)。急诊处理应首选
计算设于水中的支架或拱架的强度和稳定时,应考虑的荷载有()。
证券公司设立的分公司具有企业法人资格。()
张某、王某、李某、赵某各出资1/4,设立通程酒吧(普通合伙企业),合伙协议未对相关事项的决议办法作出约定;酒吧开业1年后,经营环境急剧变化,全体合伙人开会,协商对策。根据合伙企业法律制度的规定,合伙企业通过的下列决议中,有效的有()。
Whataretheytalkingabout?
Althoughinteractingwithgirlsseemslikeanintimidatingendeavortomanyguys,adheringtocertainprinciplesallowsittobe
最新回复
(
0
)