设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f’(x)|≤2,证明:|∫02f(x)dx|≤2.

admin2017-08-31  16

问题 设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f(x)|≤2,证明:|∫02f(x)dx|≤2.

选项

答案由微分中值定理得f(x)一f(0)=f1)x,其中0<ξ1<x,f(x)一f(2)=f2)(x一2),其中x<ξ2<2,于是[*]从而|∫02f(x)dx|≤∫02|f(x)|dx=∫01|f(x)|dx+∫12|f(x)|dx)≤∫012xdx+∫122(2一x)dx=2.

解析
转载请注明原文地址:https://jikaoti.com/ti/V6VRFFFM
0

最新回复(0)