首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C均是3阶矩阵,满足AB=-2B,CAT=2C 其中 证明:对任何3维向量ξ,A100ξ与ξ必线性相关.
设A,B,C均是3阶矩阵,满足AB=-2B,CAT=2C 其中 证明:对任何3维向量ξ,A100ξ与ξ必线性相关.
admin
2018-09-25
24
问题
设A,B,C均是3阶矩阵,满足AB=-2B,CA
T
=2C
其中
证明:对任何3维向量ξ,A
100
ξ与ξ必线性相关.
选项
答案
因Aβ
i
=-2β
i
(i=1,2),故A
100
β
i
=(-2)
100
β
i
=2
100
β
i
(i=1,2).因Aα
1
=2α
1
,故A
10
α
1
=2
100
α
1
. 对任意的3维向量ξ,因β
1
,β
2
,α
1
线性无关,ξ可由β
1
,β
2
,α
1
线性表示,且表示法唯一. 设ξ=μ
1
β
1
+μ
2
β
2
+μ
3
α
1
,则 A
100
ξ=A
100
(μ
1
β
1
+μ
2
β
2
+μ
3
α
1
)=μ
1
A
100
β
1
+μ
2
A
100
β
2
+μ
3
A
100
α
1
=μ
1
2
100
β
1
+μ
2
2
100
β
2
+μ
3
2
100
α
1
=2
100
(μ
1
β
1
+μ
2
β
2
+μ
3
α
1
)=2
100
ξ. 得证A
100
ξ和ξ成比例,A
100
ξ和ξ线性相关.
解析
转载请注明原文地址:https://jikaoti.com/ti/Uj2RFFFM
0
考研数学一
相关试题推荐
计算下列二重积分:(Ⅰ)xydσ,其中D是由曲线r=sin2θ(0≤θ≤)围成的区域;(Ⅱ)xydσ,其中D是由曲线y=,x2+(y-1)2=1与y轴围成的在右上方的部分.
比较积分值的大小:Ji=e-(x2+y2)dxdy,i=1,2,3,其中D1={(x,y)|x2+y2≤R2},D2={(x,y)|x2+y2≤2R2},D3={(x,y)|x|≤R,|y|≤R}.则J1,J2,J3之间的大小顺序为
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放人四个盒子,记X为至少有一只球的盒子的最小号码.(Ⅰ)求X的分布律;(Ⅱ)若当X=k时,随机变量Y在[0,k]上服从均匀分布,k=1,2,3,4,求P{Y≤2}.
设4元齐次线性方程组(Ⅰ)为而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,0+8)T.(1)求方程组(Ⅰ)的一个基础解系;(2)当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?若有,
(1)求级数的和函数S(x);(2)将S(x)展开为x一π/3的幂级数.
过z轴及点M(3,-2,5)的平面方程是__________.
若视∑为曲面x2+y2+z2=a2(y≥0,z≥0)的上侧,则当f(x,y,z)为下述选项中的函数(),曲线积分f(x,y,z)dydz=0.
求极限
求区域Ω的体积V,其中Ω是半球面及旋转抛物面x2+y2=2az所围成.
随机试题
下列哪些方剂均出自《温病条辨》( )
政策性银行的特征包括()
预防焊接变形可以采用进行合理的焊接结构设计的措施,下列选项中属于这种措施的有()。
在一元线性回归分析中,对相关系数r来说,下列结论正确的是________。
知识一旦学到手就可以保持得很牢固,相比较而言,动作技能形成以后却比较容易遗忘。()
设α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-1,2,0),α5=(2,1,5,6)。证明:α1,α2线性无关。
在一桩涉嫌贩卖冰毒的案件中,证人小康起了关键证明作用,下列表述错误的是()。
①但实证是手段而不是目的,史学的真正使命是探索社会变迁的内在逻辑与规律,为文明的提升提供借鉴与参考②清儒章学诚强调“言性命者必究于史”,反对离事而言理,体现了史学在真理探索中的重要作用③史学是一门科学,其最显著的学术特点是实证
管理幅度
语句LISTMEMORYLIKEa*能够显示的变量不包括
最新回复
(
0
)