首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且则式①的通解为_______
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且则式①的通解为_______
admin
2019-03-18
39
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶线性非齐次方程
y"+p(x)y’+q(x)y=f(x) ①
的3个解,且
则式①的通解为_______
选项
答案
y=C
1
(y
1
—y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由线性非齐次方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
一y
2
与y
2
一y
3
均是式①对应的线性齐次方程 y"+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
k
1
(y
1
一y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
-y
3
≠0,于是式③可改写为
矛盾.若k
1
=0,由y
2
一y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
-y
3
线性无关.
于是
Y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
一y
2
)+C
2
(y
2
-y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://jikaoti.com/ti/TqLRFFFM
0
考研数学二
相关试题推荐
曲线处的法线方程是________.
曲线y=+arctan(1+x2)的斜渐近线方程为________.
设函数f(x)在x=0处可导,且f(0)=0,则
设函数y=y(x)满足微分方程y"一3y’+2y=2ex,其图形在点(0,1)处的切线与曲线y=x2一x+l在该点处的切线重合,求函数y的解析表达式.
设A=已知线性方程组Ax=b存在2个不同的解.(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于AT的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
微分方程y’+ytanx=cosx的通解为______
设0<x1<x2,f(x)在[x1,x2]可导,证明:在(x1,x2)内至少一个c,使得
设an>0(n=l,2,…),Sn=a1+a2+…+an,则数列{Sn}有界是数列{an}收敛的
设f(χ)二阶可导,f(0)=0,令g(χ)=(1)求g′(χ);(2)讨论g′(χ)在χ=0处的连续性.
随机试题
防火分区至避难走道入口处应设置防烟前室,前室的使用面积不应小于()m2。
执业药师管理的意义是
设计方应尽可能使设计工作的进度与()相协调。
港口与航道工程变形监测网布设前,应充分收集测区已有基础资料,根据测区的地形、地质条件,()进行全面计划和设计。
下列属于系统管理员的操作权限是()。
下列各项中,属于我国会计法律的有()。
故乡的小河故乡的小河,一直在我的梦中蜿蜒流淌。我的故乡是东北山区的一个小村庄,虽算不上风光旖旎,但也称得上山清水秀。小河在村边蜿蜒流淌,流过了远古洪荒,珍藏了岁月的沧桑。春天的小河是一首清丽温婉的诗,夏天的小河是一幅生动的民间风俗画,秋
卫星:飞船:航天
在线性表的顺序存储结构中,其存储空间连续,各个元素所占的字节数()。
Howmuchwastheman’sestateworth?
最新回复
(
0
)