设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.

admin2022-08-19  82

问题 设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.

选项

答案(必要性)设f(x,y),)在点(0,0)处可微,则f′x(0,0),f′y(0,0)存在. [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/TWfRFFFM
0

随机试题
最新回复(0)